Tauwehe
-12\left(x+1\right)\left(x+3\right)
Aromātai
-12\left(x+1\right)\left(x+3\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
12\left(-x^{2}-4x-3\right)
Tauwehea te 12.
a+b=-4 ab=-\left(-3\right)=3
Whakaarohia te -x^{2}-4x-3. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-1 b=-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}-x\right)+\left(-3x-3\right)
Tuhia anō te -x^{2}-4x-3 hei \left(-x^{2}-x\right)+\left(-3x-3\right).
x\left(-x-1\right)+3\left(-x-1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(-x-1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi -x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
12\left(-x-1\right)\left(x+3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-12x^{2}-48x-36=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-12\right)\left(-36\right)}}{2\left(-12\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-48\right)±\sqrt{2304-4\left(-12\right)\left(-36\right)}}{2\left(-12\right)}
Pūrua -48.
x=\frac{-\left(-48\right)±\sqrt{2304+48\left(-36\right)}}{2\left(-12\right)}
Whakareatia -4 ki te -12.
x=\frac{-\left(-48\right)±\sqrt{2304-1728}}{2\left(-12\right)}
Whakareatia 48 ki te -36.
x=\frac{-\left(-48\right)±\sqrt{576}}{2\left(-12\right)}
Tāpiri 2304 ki te -1728.
x=\frac{-\left(-48\right)±24}{2\left(-12\right)}
Tuhia te pūtakerua o te 576.
x=\frac{48±24}{2\left(-12\right)}
Ko te tauaro o -48 ko 48.
x=\frac{48±24}{-24}
Whakareatia 2 ki te -12.
x=\frac{72}{-24}
Nā, me whakaoti te whārite x=\frac{48±24}{-24} ina he tāpiri te ±. Tāpiri 48 ki te 24.
x=-3
Whakawehe 72 ki te -24.
x=\frac{24}{-24}
Nā, me whakaoti te whārite x=\frac{48±24}{-24} ina he tango te ±. Tango 24 mai i 48.
x=-1
Whakawehe 24 ki te -24.
-12x^{2}-48x-36=-12\left(x-\left(-3\right)\right)\left(x-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -3 mō te x_{1} me te -1 mō te x_{2}.
-12x^{2}-48x-36=-12\left(x+3\right)\left(x+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}