Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

37587x-491x^{2}=-110
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
37587x-491x^{2}+110=0
Me tāpiri te 110 ki ngā taha e rua.
-491x^{2}+37587x+110=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-37587±\sqrt{37587^{2}-4\left(-491\right)\times 110}}{2\left(-491\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -491 mō a, 37587 mō b, me 110 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-37587±\sqrt{1412782569-4\left(-491\right)\times 110}}{2\left(-491\right)}
Pūrua 37587.
x=\frac{-37587±\sqrt{1412782569+1964\times 110}}{2\left(-491\right)}
Whakareatia -4 ki te -491.
x=\frac{-37587±\sqrt{1412782569+216040}}{2\left(-491\right)}
Whakareatia 1964 ki te 110.
x=\frac{-37587±\sqrt{1412998609}}{2\left(-491\right)}
Tāpiri 1412782569 ki te 216040.
x=\frac{-37587±\sqrt{1412998609}}{-982}
Whakareatia 2 ki te -491.
x=\frac{\sqrt{1412998609}-37587}{-982}
Nā, me whakaoti te whārite x=\frac{-37587±\sqrt{1412998609}}{-982} ina he tāpiri te ±. Tāpiri -37587 ki te \sqrt{1412998609}.
x=\frac{37587-\sqrt{1412998609}}{982}
Whakawehe -37587+\sqrt{1412998609} ki te -982.
x=\frac{-\sqrt{1412998609}-37587}{-982}
Nā, me whakaoti te whārite x=\frac{-37587±\sqrt{1412998609}}{-982} ina he tango te ±. Tango \sqrt{1412998609} mai i -37587.
x=\frac{\sqrt{1412998609}+37587}{982}
Whakawehe -37587-\sqrt{1412998609} ki te -982.
x=\frac{37587-\sqrt{1412998609}}{982} x=\frac{\sqrt{1412998609}+37587}{982}
Kua oti te whārite te whakatau.
37587x-491x^{2}=-110
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-491x^{2}+37587x=-110
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-491x^{2}+37587x}{-491}=-\frac{110}{-491}
Whakawehea ngā taha e rua ki te -491.
x^{2}+\frac{37587}{-491}x=-\frac{110}{-491}
Mā te whakawehe ki te -491 ka wetekia te whakareanga ki te -491.
x^{2}-\frac{37587}{491}x=-\frac{110}{-491}
Whakawehe 37587 ki te -491.
x^{2}-\frac{37587}{491}x=\frac{110}{491}
Whakawehe -110 ki te -491.
x^{2}-\frac{37587}{491}x+\left(-\frac{37587}{982}\right)^{2}=\frac{110}{491}+\left(-\frac{37587}{982}\right)^{2}
Whakawehea te -\frac{37587}{491}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{37587}{982}. Nā, tāpiria te pūrua o te -\frac{37587}{982} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{37587}{491}x+\frac{1412782569}{964324}=\frac{110}{491}+\frac{1412782569}{964324}
Pūruatia -\frac{37587}{982} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{37587}{491}x+\frac{1412782569}{964324}=\frac{1412998609}{964324}
Tāpiri \frac{110}{491} ki te \frac{1412782569}{964324} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{37587}{982}\right)^{2}=\frac{1412998609}{964324}
Tauwehea x^{2}-\frac{37587}{491}x+\frac{1412782569}{964324}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37587}{982}\right)^{2}}=\sqrt{\frac{1412998609}{964324}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{37587}{982}=\frac{\sqrt{1412998609}}{982} x-\frac{37587}{982}=-\frac{\sqrt{1412998609}}{982}
Whakarūnātia.
x=\frac{\sqrt{1412998609}+37587}{982} x=\frac{37587-\sqrt{1412998609}}{982}
Me tāpiri \frac{37587}{982} ki ngā taha e rua o te whārite.