Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x^{2}=-2+1
Me tāpiri te 1 ki ngā taha e rua.
-2x^{2}=-1
Tāpirihia te -2 ki te 1, ka -1.
x^{2}=\frac{-1}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}=\frac{1}{2}
Ka taea te hautanga \frac{-1}{-2} te whakamāmā ki te \frac{1}{2} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-1-2x^{2}+2=0
Me tāpiri te 2 ki ngā taha e rua.
1-2x^{2}=0
Tāpirihia te -1 ki te 2, ka 1.
-2x^{2}+1=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 0 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)}}{2\left(-2\right)}
Pūrua 0.
x=\frac{0±\sqrt{8}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{0±2\sqrt{2}}{2\left(-2\right)}
Tuhia te pūtakerua o te 8.
x=\frac{0±2\sqrt{2}}{-4}
Whakareatia 2 ki te -2.
x=-\frac{\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{2}}{-4} ina he tāpiri te ±.
x=\frac{\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{2}}{-4} ina he tango te ±.
x=-\frac{\sqrt{2}}{2} x=\frac{\sqrt{2}}{2}
Kua oti te whārite te whakatau.