Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0x^{3}+15x^{2}-x-12
Whakareatia te 0 ki te 125, ka 0.
0+15x^{2}-x-12
Ko te tau i whakarea ki te kore ka hua ko te kore.
-12+15x^{2}-x
Tangohia te 12 i te 0, ka -12.
factor(0x^{3}+15x^{2}-x-12)
Whakareatia te 0 ki te 125, ka 0.
factor(0+15x^{2}-x-12)
Ko te tau i whakarea ki te kore ka hua ko te kore.
factor(-12+15x^{2}-x)
Tangohia te 12 i te 0, ka -12.
15x^{2}-x-12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 15\left(-12\right)}}{2\times 15}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-60\left(-12\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-\left(-1\right)±\sqrt{1+720}}{2\times 15}
Whakareatia -60 ki te -12.
x=\frac{-\left(-1\right)±\sqrt{721}}{2\times 15}
Tāpiri 1 ki te 720.
x=\frac{1±\sqrt{721}}{2\times 15}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{721}}{30}
Whakareatia 2 ki te 15.
x=\frac{\sqrt{721}+1}{30}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{721}}{30} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{721}.
x=\frac{1-\sqrt{721}}{30}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{721}}{30} ina he tango te ±. Tango \sqrt{721} mai i 1.
15x^{2}-x-12=15\left(x-\frac{\sqrt{721}+1}{30}\right)\left(x-\frac{1-\sqrt{721}}{30}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1+\sqrt{721}}{30} mō te x_{1} me te \frac{1-\sqrt{721}}{30} mō te x_{2}.