Whakaoti mō x
x=2\sqrt{17}+10\approx 18.246211251
x=10-2\sqrt{17}\approx 1.753788749
Graph
Tohaina
Kua tāruatia ki te papatopenga
-0.25x^{2}+5x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\left(-0.25\right)\left(-8\right)}}{2\left(-0.25\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -0.25 mō a, 5 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-0.25\right)\left(-8\right)}}{2\left(-0.25\right)}
Pūrua 5.
x=\frac{-5±\sqrt{25-8}}{2\left(-0.25\right)}
Whakareatia -4 ki te -0.25.
x=\frac{-5±\sqrt{17}}{2\left(-0.25\right)}
Tāpiri 25 ki te -8.
x=\frac{-5±\sqrt{17}}{-0.5}
Whakareatia 2 ki te -0.25.
x=\frac{\sqrt{17}-5}{-0.5}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{17}}{-0.5} ina he tāpiri te ±. Tāpiri -5 ki te \sqrt{17}.
x=10-2\sqrt{17}
Whakawehe -5+\sqrt{17} ki te -0.5 mā te whakarea -5+\sqrt{17} ki te tau huripoki o -0.5.
x=\frac{-\sqrt{17}-5}{-0.5}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{17}}{-0.5} ina he tango te ±. Tango \sqrt{17} mai i -5.
x=2\sqrt{17}+10
Whakawehe -5-\sqrt{17} ki te -0.5 mā te whakarea -5-\sqrt{17} ki te tau huripoki o -0.5.
x=10-2\sqrt{17} x=2\sqrt{17}+10
Kua oti te whārite te whakatau.
-0.25x^{2}+5x-8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-0.25x^{2}+5x-8-\left(-8\right)=-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
-0.25x^{2}+5x=-\left(-8\right)
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
-0.25x^{2}+5x=8
Tango -8 mai i 0.
\frac{-0.25x^{2}+5x}{-0.25}=\frac{8}{-0.25}
Me whakarea ngā taha e rua ki te -4.
x^{2}+\frac{5}{-0.25}x=\frac{8}{-0.25}
Mā te whakawehe ki te -0.25 ka wetekia te whakareanga ki te -0.25.
x^{2}-20x=\frac{8}{-0.25}
Whakawehe 5 ki te -0.25 mā te whakarea 5 ki te tau huripoki o -0.25.
x^{2}-20x=-32
Whakawehe 8 ki te -0.25 mā te whakarea 8 ki te tau huripoki o -0.25.
x^{2}-20x+\left(-10\right)^{2}=-32+\left(-10\right)^{2}
Whakawehea te -20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -10. Nā, tāpiria te pūrua o te -10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-20x+100=-32+100
Pūrua -10.
x^{2}-20x+100=68
Tāpiri -32 ki te 100.
\left(x-10\right)^{2}=68
Tauwehea x^{2}-20x+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{68}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-10=2\sqrt{17} x-10=-2\sqrt{17}
Whakarūnātia.
x=2\sqrt{17}+10 x=10-2\sqrt{17}
Me tāpiri 10 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}