Aromātai
-10
Tauwehe
-10
Tohaina
Kua tāruatia ki te papatopenga
-0.06\times 100+\frac{8}{\sqrt{256}}-2.5\sqrt{3.24}
Tātaitia te pūtakerua o 10000 kia tae ki 100.
-6+\frac{8}{\sqrt{256}}-2.5\sqrt{3.24}
Whakareatia te -0.06 ki te 100, ka -6.
-6+\frac{8}{16}-2.5\sqrt{3.24}
Tātaitia te pūtakerua o 256 kia tae ki 16.
-6+\frac{1}{2}-2.5\sqrt{3.24}
Whakahekea te hautanga \frac{8}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
-\frac{12}{2}+\frac{1}{2}-2.5\sqrt{3.24}
Me tahuri te -6 ki te hautau -\frac{12}{2}.
\frac{-12+1}{2}-2.5\sqrt{3.24}
Tā te mea he rite te tauraro o -\frac{12}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{11}{2}-2.5\sqrt{3.24}
Tāpirihia te -12 ki te 1, ka -11.
-\frac{11}{2}-2.5\times 1.8
Tātaitia te pūtakerua o 3.24 kia tae ki 1.8.
-\frac{11}{2}-4.5
Whakareatia te -2.5 ki te 1.8, ka -4.5.
-\frac{11}{2}-\frac{9}{2}
Me tahuri ki tau ā-ira 4.5 ki te hautau \frac{45}{10}. Whakahekea te hautanga \frac{45}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{-11-9}{2}
Tā te mea he rite te tauraro o -\frac{11}{2} me \frac{9}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{-20}{2}
Tangohia te 9 i te -11, ka -20.
-10
Whakawehea te -20 ki te 2, kia riro ko -10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}