Whakaoti mō x
x=-y-z
Whakaoti mō y
y=-x-z
Tohaina
Kua tāruatia ki te papatopenga
-y-z-\left(y+x\right)-\left(x+z\right)=0
Hei kimi i te tauaro o y+z, kimihia te tauaro o ia taurangi.
-y-z-y-x-\left(x+z\right)=0
Hei kimi i te tauaro o y+x, kimihia te tauaro o ia taurangi.
-2y-z-x-\left(x+z\right)=0
Pahekotia te -y me -y, ka -2y.
-2y-z-x-x-z=0
Hei kimi i te tauaro o x+z, kimihia te tauaro o ia taurangi.
-2y-z-2x-z=0
Pahekotia te -x me -x, ka -2x.
-2y-2z-2x=0
Pahekotia te -z me -z, ka -2z.
-2z-2x=2y
Me tāpiri te 2y ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-2x=2y+2z
Me tāpiri te 2z ki ngā taha e rua.
\frac{-2x}{-2}=\frac{2y+2z}{-2}
Whakawehea ngā taha e rua ki te -2.
x=\frac{2y+2z}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x=-\left(y+z\right)
Whakawehe 2y+2z ki te -2.
-y-z-\left(y+x\right)-\left(x+z\right)=0
Hei kimi i te tauaro o y+z, kimihia te tauaro o ia taurangi.
-y-z-y-x-\left(x+z\right)=0
Hei kimi i te tauaro o y+x, kimihia te tauaro o ia taurangi.
-2y-z-x-\left(x+z\right)=0
Pahekotia te -y me -y, ka -2y.
-2y-z-x-x-z=0
Hei kimi i te tauaro o x+z, kimihia te tauaro o ia taurangi.
-2y-z-2x-z=0
Pahekotia te -x me -x, ka -2x.
-2y-2z-2x=0
Pahekotia te -z me -z, ka -2z.
-2y-2x=2z
Me tāpiri te 2z ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-2y=2z+2x
Me tāpiri te 2x ki ngā taha e rua.
-2y=2x+2z
He hanga arowhānui tō te whārite.
\frac{-2y}{-2}=\frac{2x+2z}{-2}
Whakawehea ngā taha e rua ki te -2.
y=\frac{2x+2z}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
y=-\left(x+z\right)
Whakawehe 2z+2x ki te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}