Whakaoti mō x
x = -\frac{32}{11} = -2\frac{10}{11} \approx -2.909090909
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x-\left(-12\right)=-4\left(3x+5\right)
Hei kimi i te tauaro o x-12, kimihia te tauaro o ia taurangi.
-x+12=-4\left(3x+5\right)
Ko te tauaro o -12 ko 12.
-x+12=-12x-20
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3x+5.
-x+12+12x=-20
Me tāpiri te 12x ki ngā taha e rua.
11x+12=-20
Pahekotia te -x me 12x, ka 11x.
11x=-20-12
Tangohia te 12 mai i ngā taha e rua.
11x=-32
Tangohia te 12 i te -20, ka -32.
x=\frac{-32}{11}
Whakawehea ngā taha e rua ki te 11.
x=-\frac{32}{11}
Ka taea te hautanga \frac{-32}{11} te tuhi anō ko -\frac{32}{11} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}