Whakaoti mō x
x=-\frac{6}{13}\approx -0.461538462
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x-6-8+3x=30x-\left(x+6\right)-5x+4
Hei kimi i te tauaro o 5x+6, kimihia te tauaro o ia taurangi.
-5x-14+3x=30x-\left(x+6\right)-5x+4
Tangohia te 8 i te -6, ka -14.
-2x-14=30x-\left(x+6\right)-5x+4
Pahekotia te -5x me 3x, ka -2x.
-2x-14=30x-x-6-5x+4
Hei kimi i te tauaro o x+6, kimihia te tauaro o ia taurangi.
-2x-14=29x-6-5x+4
Pahekotia te 30x me -x, ka 29x.
-2x-14=24x-6+4
Pahekotia te 29x me -5x, ka 24x.
-2x-14=24x-2
Tāpirihia te -6 ki te 4, ka -2.
-2x-14-24x=-2
Tangohia te 24x mai i ngā taha e rua.
-26x-14=-2
Pahekotia te -2x me -24x, ka -26x.
-26x=-2+14
Me tāpiri te 14 ki ngā taha e rua.
-26x=12
Tāpirihia te -2 ki te 14, ka 12.
x=\frac{12}{-26}
Whakawehea ngā taha e rua ki te -26.
x=-\frac{6}{13}
Whakahekea te hautanga \frac{12}{-26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}