Whakaoti mō x
x=\frac{16}{17}\approx 0.941176471
Graph
Tohaina
Kua tāruatia ki te papatopenga
-4x-\left(-6\right)+9=7x-\left(1-6x\right)
Hei kimi i te tauaro o 4x-6, kimihia te tauaro o ia taurangi.
-4x+6+9=7x-\left(1-6x\right)
Ko te tauaro o -6 ko 6.
-4x+15=7x-\left(1-6x\right)
Tāpirihia te 6 ki te 9, ka 15.
-4x+15=7x-1-\left(-6x\right)
Hei kimi i te tauaro o 1-6x, kimihia te tauaro o ia taurangi.
-4x+15=7x-1+6x
Ko te tauaro o -6x ko 6x.
-4x+15=13x-1
Pahekotia te 7x me 6x, ka 13x.
-4x+15-13x=-1
Tangohia te 13x mai i ngā taha e rua.
-17x+15=-1
Pahekotia te -4x me -13x, ka -17x.
-17x=-1-15
Tangohia te 15 mai i ngā taha e rua.
-17x=-16
Tangohia te 15 i te -1, ka -16.
x=\frac{-16}{-17}
Whakawehea ngā taha e rua ki te -17.
x=\frac{16}{17}
Ka taea te hautanga \frac{-16}{-17} te whakamāmā ki te \frac{16}{17} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}