Whakaoti mō x
x=\frac{\sqrt{159}}{6}+\frac{7}{2}\approx 5.601586702
x=-\frac{\sqrt{159}}{6}+\frac{7}{2}\approx 1.398413298
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-3x-\left(-4\right)\right)\times 4\left(x-5\right)=2\left(7-4x\right)
Hei kimi i te tauaro o 3x-4, kimihia te tauaro o ia taurangi.
\left(-3x+4\right)\times 4\left(x-5\right)=2\left(7-4x\right)
Ko te tauaro o -4 ko 4.
\left(-12x+16\right)\left(x-5\right)=2\left(7-4x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3x+4 ki te 4.
-12x^{2}+60x+16x-80=2\left(7-4x\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -12x+16 ki ia tau o x-5.
-12x^{2}+76x-80=2\left(7-4x\right)
Pahekotia te 60x me 16x, ka 76x.
-12x^{2}+76x-80=14-8x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 7-4x.
-12x^{2}+76x-80-14=-8x
Tangohia te 14 mai i ngā taha e rua.
-12x^{2}+76x-94=-8x
Tangohia te 14 i te -80, ka -94.
-12x^{2}+76x-94+8x=0
Me tāpiri te 8x ki ngā taha e rua.
-12x^{2}+84x-94=0
Pahekotia te 76x me 8x, ka 84x.
x=\frac{-84±\sqrt{84^{2}-4\left(-12\right)\left(-94\right)}}{2\left(-12\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -12 mō a, 84 mō b, me -94 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-84±\sqrt{7056-4\left(-12\right)\left(-94\right)}}{2\left(-12\right)}
Pūrua 84.
x=\frac{-84±\sqrt{7056+48\left(-94\right)}}{2\left(-12\right)}
Whakareatia -4 ki te -12.
x=\frac{-84±\sqrt{7056-4512}}{2\left(-12\right)}
Whakareatia 48 ki te -94.
x=\frac{-84±\sqrt{2544}}{2\left(-12\right)}
Tāpiri 7056 ki te -4512.
x=\frac{-84±4\sqrt{159}}{2\left(-12\right)}
Tuhia te pūtakerua o te 2544.
x=\frac{-84±4\sqrt{159}}{-24}
Whakareatia 2 ki te -12.
x=\frac{4\sqrt{159}-84}{-24}
Nā, me whakaoti te whārite x=\frac{-84±4\sqrt{159}}{-24} ina he tāpiri te ±. Tāpiri -84 ki te 4\sqrt{159}.
x=-\frac{\sqrt{159}}{6}+\frac{7}{2}
Whakawehe -84+4\sqrt{159} ki te -24.
x=\frac{-4\sqrt{159}-84}{-24}
Nā, me whakaoti te whārite x=\frac{-84±4\sqrt{159}}{-24} ina he tango te ±. Tango 4\sqrt{159} mai i -84.
x=\frac{\sqrt{159}}{6}+\frac{7}{2}
Whakawehe -84-4\sqrt{159} ki te -24.
x=-\frac{\sqrt{159}}{6}+\frac{7}{2} x=\frac{\sqrt{159}}{6}+\frac{7}{2}
Kua oti te whārite te whakatau.
\left(-3x-\left(-4\right)\right)\times 4\left(x-5\right)=2\left(7-4x\right)
Hei kimi i te tauaro o 3x-4, kimihia te tauaro o ia taurangi.
\left(-3x+4\right)\times 4\left(x-5\right)=2\left(7-4x\right)
Ko te tauaro o -4 ko 4.
\left(-12x+16\right)\left(x-5\right)=2\left(7-4x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3x+4 ki te 4.
-12x^{2}+60x+16x-80=2\left(7-4x\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -12x+16 ki ia tau o x-5.
-12x^{2}+76x-80=2\left(7-4x\right)
Pahekotia te 60x me 16x, ka 76x.
-12x^{2}+76x-80=14-8x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 7-4x.
-12x^{2}+76x-80+8x=14
Me tāpiri te 8x ki ngā taha e rua.
-12x^{2}+84x-80=14
Pahekotia te 76x me 8x, ka 84x.
-12x^{2}+84x=14+80
Me tāpiri te 80 ki ngā taha e rua.
-12x^{2}+84x=94
Tāpirihia te 14 ki te 80, ka 94.
\frac{-12x^{2}+84x}{-12}=\frac{94}{-12}
Whakawehea ngā taha e rua ki te -12.
x^{2}+\frac{84}{-12}x=\frac{94}{-12}
Mā te whakawehe ki te -12 ka wetekia te whakareanga ki te -12.
x^{2}-7x=\frac{94}{-12}
Whakawehe 84 ki te -12.
x^{2}-7x=-\frac{47}{6}
Whakahekea te hautanga \frac{94}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-\frac{47}{6}+\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=-\frac{47}{6}+\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-7x+\frac{49}{4}=\frac{53}{12}
Tāpiri -\frac{47}{6} ki te \frac{49}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{2}\right)^{2}=\frac{53}{12}
Tauwehea x^{2}-7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{53}{12}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{\sqrt{159}}{6} x-\frac{7}{2}=-\frac{\sqrt{159}}{6}
Whakarūnātia.
x=\frac{\sqrt{159}}{6}+\frac{7}{2} x=-\frac{\sqrt{159}}{6}+\frac{7}{2}
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}