Whakaoti mō a
a=2
Tohaina
Kua tāruatia ki te papatopenga
-2a-\left(-1\right)=3a-9
Hei kimi i te tauaro o 2a-1, kimihia te tauaro o ia taurangi.
-2a+1=3a-9
Ko te tauaro o -1 ko 1.
-2a+1-3a=-9
Tangohia te 3a mai i ngā taha e rua.
-5a+1=-9
Pahekotia te -2a me -3a, ka -5a.
-5a=-9-1
Tangohia te 1 mai i ngā taha e rua.
-5a=-10
Tangohia te 1 i te -9, ka -10.
a=\frac{-10}{-5}
Whakawehea ngā taha e rua ki te -5.
a=2
Whakawehea te -10 ki te -5, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}