Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-y^{2}+10-3y=0
Tangohia te 3y mai i ngā taha e rua.
-y^{2}-3y+10=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=-10=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -y^{2}+ay+by+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=2 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(-y^{2}+2y\right)+\left(-5y+10\right)
Tuhia anō te -y^{2}-3y+10 hei \left(-y^{2}+2y\right)+\left(-5y+10\right).
y\left(-y+2\right)+5\left(-y+2\right)
Tauwehea te y i te tuatahi me te 5 i te rōpū tuarua.
\left(-y+2\right)\left(y+5\right)
Whakatauwehea atu te kīanga pātahi -y+2 mā te whakamahi i te āhuatanga tātai tohatoha.
y=2 y=-5
Hei kimi otinga whārite, me whakaoti te -y+2=0 me te y+5=0.
-y^{2}+10-3y=0
Tangohia te 3y mai i ngā taha e rua.
-y^{2}-3y+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -3 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 10}}{2\left(-1\right)}
Pūrua -3.
y=\frac{-\left(-3\right)±\sqrt{9+4\times 10}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
y=\frac{-\left(-3\right)±\sqrt{9+40}}{2\left(-1\right)}
Whakareatia 4 ki te 10.
y=\frac{-\left(-3\right)±\sqrt{49}}{2\left(-1\right)}
Tāpiri 9 ki te 40.
y=\frac{-\left(-3\right)±7}{2\left(-1\right)}
Tuhia te pūtakerua o te 49.
y=\frac{3±7}{2\left(-1\right)}
Ko te tauaro o -3 ko 3.
y=\frac{3±7}{-2}
Whakareatia 2 ki te -1.
y=\frac{10}{-2}
Nā, me whakaoti te whārite y=\frac{3±7}{-2} ina he tāpiri te ±. Tāpiri 3 ki te 7.
y=-5
Whakawehe 10 ki te -2.
y=-\frac{4}{-2}
Nā, me whakaoti te whārite y=\frac{3±7}{-2} ina he tango te ±. Tango 7 mai i 3.
y=2
Whakawehe -4 ki te -2.
y=-5 y=2
Kua oti te whārite te whakatau.
-y^{2}+10-3y=0
Tangohia te 3y mai i ngā taha e rua.
-y^{2}-3y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-y^{2}-3y}{-1}=-\frac{10}{-1}
Whakawehea ngā taha e rua ki te -1.
y^{2}+\left(-\frac{3}{-1}\right)y=-\frac{10}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y^{2}+3y=-\frac{10}{-1}
Whakawehe -3 ki te -1.
y^{2}+3y=10
Whakawehe -10 ki te -1.
y^{2}+3y+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+3y+\frac{9}{4}=10+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+3y+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(y+\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea y^{2}+3y+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{3}{2}=\frac{7}{2} y+\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
y=2 y=-5
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.