Whakaoti mō x
x=8.1
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-x\right)x-8.1\left(-x\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x-8.1.
\left(-x\right)x+8.1x=0
Whakareatia te -8.1 ki te -1, ka 8.1.
-x^{2}+8.1x=0
Whakareatia te x ki te x, ka x^{2}.
x\left(-x+8.1\right)=0
Tauwehea te x.
x=0 x=\frac{81}{10}
Hei kimi otinga whārite, me whakaoti te x=0 me te -x+8.1=0.
\left(-x\right)x-8.1\left(-x\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x-8.1.
\left(-x\right)x+8.1x=0
Whakareatia te -8.1 ki te -1, ka 8.1.
-x^{2}+8.1x=0
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+\frac{81}{10}x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{81}{10}±\sqrt{\left(\frac{81}{10}\right)^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, \frac{81}{10} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{81}{10}±\frac{81}{10}}{2\left(-1\right)}
Tuhia te pūtakerua o te \left(\frac{81}{10}\right)^{2}.
x=\frac{-\frac{81}{10}±\frac{81}{10}}{-2}
Whakareatia 2 ki te -1.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{-\frac{81}{10}±\frac{81}{10}}{-2} ina he tāpiri te ±. Tāpiri -\frac{81}{10} ki te \frac{81}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te -2.
x=-\frac{\frac{81}{5}}{-2}
Nā, me whakaoti te whārite x=\frac{-\frac{81}{10}±\frac{81}{10}}{-2} ina he tango te ±. Tango \frac{81}{10} mai i -\frac{81}{10} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{81}{10}
Whakawehe -\frac{81}{5} ki te -2.
x=0 x=\frac{81}{10}
Kua oti te whārite te whakatau.
\left(-x\right)x-8.1\left(-x\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te -x ki te x-8.1.
\left(-x\right)x+8.1x=0
Whakareatia te -8.1 ki te -1, ka 8.1.
-x^{2}+8.1x=0
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+\frac{81}{10}x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+\frac{81}{10}x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{\frac{81}{10}}{-1}x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-\frac{81}{10}x=\frac{0}{-1}
Whakawehe \frac{81}{10} ki te -1.
x^{2}-\frac{81}{10}x=0
Whakawehe 0 ki te -1.
x^{2}-\frac{81}{10}x+\left(-\frac{81}{20}\right)^{2}=\left(-\frac{81}{20}\right)^{2}
Whakawehea te -\frac{81}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{81}{20}. Nā, tāpiria te pūrua o te -\frac{81}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{81}{10}x+\frac{6561}{400}=\frac{6561}{400}
Pūruatia -\frac{81}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{81}{20}\right)^{2}=\frac{6561}{400}
Tauwehea x^{2}-\frac{81}{10}x+\frac{6561}{400}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{81}{20}\right)^{2}}=\sqrt{\frac{6561}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{81}{20}=\frac{81}{20} x-\frac{81}{20}=-\frac{81}{20}
Whakarūnātia.
x=\frac{81}{10} x=0
Me tāpiri \frac{81}{20} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}