Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-t^{2}+18t-81=0
Whakakapia te t mō te x^{2}.
t=\frac{-18±\sqrt{18^{2}-4\left(-1\right)\left(-81\right)}}{-2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -1 mō te a, te 18 mō te b, me te -81 mō te c i te ture pūrua.
t=\frac{-18±0}{-2}
Mahia ngā tātaitai.
t=9
He ōrite ngā whakatau.
x=-3 x=3
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.