Whakaoti mō x (complex solution)
x=\frac{-\sqrt{3}i-1}{2}\approx -0.5-0.866025404i
x=\frac{-1+\sqrt{3}i}{2}\approx -0.5+0.866025404i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}-x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -1 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-1\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2\left(-1\right)}
Whakareatia 4 ki te -1.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2\left(-1\right)}
Tāpiri 1 ki te -4.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -3.
x=\frac{1±\sqrt{3}i}{2\left(-1\right)}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{3}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{1+\sqrt{3}i}{-2}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{3}i}{-2} ina he tāpiri te ±. Tāpiri 1 ki te i\sqrt{3}.
x=\frac{-\sqrt{3}i-1}{2}
Whakawehe 1+i\sqrt{3} ki te -2.
x=\frac{-\sqrt{3}i+1}{-2}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{3}i}{-2} ina he tango te ±. Tango i\sqrt{3} mai i 1.
x=\frac{-1+\sqrt{3}i}{2}
Whakawehe 1-i\sqrt{3} ki te -2.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Kua oti te whārite te whakatau.
-x^{2}-x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}-x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
-x^{2}-x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
-x^{2}-x=1
Tango -1 mai i 0.
\frac{-x^{2}-x}{-1}=\frac{1}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+x=\frac{1}{-1}
Whakawehe -1 ki te -1.
x^{2}+x=-1
Whakawehe 1 ki te -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
Tāpiri -1 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Whakarūnātia.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}