Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}-ax^{2}+ax-1=-2x
Tangohia te 2x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}-ax^{2}+ax=-2x+1
Me tāpiri te 1 ki ngā taha e rua.
-ax^{2}+ax=-2x+1+x^{2}
Me tāpiri te x^{2} ki ngā taha e rua.
\left(-x^{2}+x\right)a=-2x+1+x^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x-x^{2}\right)a=x^{2}-2x+1
He hanga arowhānui tō te whārite.
\frac{\left(x-x^{2}\right)a}{x-x^{2}}=\frac{\left(x-1\right)^{2}}{x-x^{2}}
Whakawehea ngā taha e rua ki te -x^{2}+x.
a=\frac{\left(x-1\right)^{2}}{x-x^{2}}
Mā te whakawehe ki te -x^{2}+x ka wetekia te whakareanga ki te -x^{2}+x.
a=-1+\frac{1}{x}
Whakawehe \left(x-1\right)^{2} ki te -x^{2}+x.
-x^{2}-ax^{2}+ax-1=-2x
Tangohia te 2x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}-ax^{2}+ax=-2x+1
Me tāpiri te 1 ki ngā taha e rua.
-ax^{2}+ax=-2x+1+x^{2}
Me tāpiri te x^{2} ki ngā taha e rua.
\left(-x^{2}+x\right)a=-2x+1+x^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(x-x^{2}\right)a=x^{2}-2x+1
He hanga arowhānui tō te whārite.
\frac{\left(x-x^{2}\right)a}{x-x^{2}}=\frac{\left(x-1\right)^{2}}{x-x^{2}}
Whakawehea ngā taha e rua ki te -x^{2}+x.
a=\frac{\left(x-1\right)^{2}}{x-x^{2}}
Mā te whakawehe ki te -x^{2}+x ka wetekia te whakareanga ki te -x^{2}+x.
a=-1+\frac{1}{x}
Whakawehe \left(x-1\right)^{2} ki te -x^{2}+x.