Whakaoti mō x
x=-\frac{1}{2}=-0.5
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}-5x+\frac{1}{2}x=2
Me tāpiri te \frac{1}{2}x ki ngā taha e rua.
-x^{2}-\frac{9}{2}x=2
Pahekotia te -5x me \frac{1}{2}x, ka -\frac{9}{2}x.
-x^{2}-\frac{9}{2}x-2=0
Tangohia te 2 mai i ngā taha e rua.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\left(-\frac{9}{2}\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -\frac{9}{2} mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{81}{4}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{81}{4}+4\left(-2\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{81}{4}-8}}{2\left(-1\right)}
Whakareatia 4 ki te -2.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{49}{4}}}{2\left(-1\right)}
Tāpiri \frac{81}{4} ki te -8.
x=\frac{-\left(-\frac{9}{2}\right)±\frac{7}{2}}{2\left(-1\right)}
Tuhia te pūtakerua o te \frac{49}{4}.
x=\frac{\frac{9}{2}±\frac{7}{2}}{2\left(-1\right)}
Ko te tauaro o -\frac{9}{2} ko \frac{9}{2}.
x=\frac{\frac{9}{2}±\frac{7}{2}}{-2}
Whakareatia 2 ki te -1.
x=\frac{8}{-2}
Nā, me whakaoti te whārite x=\frac{\frac{9}{2}±\frac{7}{2}}{-2} ina he tāpiri te ±. Tāpiri \frac{9}{2} ki te \frac{7}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4
Whakawehe 8 ki te -2.
x=\frac{1}{-2}
Nā, me whakaoti te whārite x=\frac{\frac{9}{2}±\frac{7}{2}}{-2} ina he tango te ±. Tango \frac{7}{2} mai i \frac{9}{2} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1}{2}
Whakawehe 1 ki te -2.
x=-4 x=-\frac{1}{2}
Kua oti te whārite te whakatau.
-x^{2}-5x+\frac{1}{2}x=2
Me tāpiri te \frac{1}{2}x ki ngā taha e rua.
-x^{2}-\frac{9}{2}x=2
Pahekotia te -5x me \frac{1}{2}x, ka -\frac{9}{2}x.
\frac{-x^{2}-\frac{9}{2}x}{-1}=\frac{2}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{\frac{9}{2}}{-1}\right)x=\frac{2}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+\frac{9}{2}x=\frac{2}{-1}
Whakawehe -\frac{9}{2} ki te -1.
x^{2}+\frac{9}{2}x=-2
Whakawehe 2 ki te -1.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=-2+\left(\frac{9}{4}\right)^{2}
Whakawehea te \frac{9}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{4}. Nā, tāpiria te pūrua o te \frac{9}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{9}{2}x+\frac{81}{16}=-2+\frac{81}{16}
Pūruatia \frac{9}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{49}{16}
Tāpiri -2 ki te \frac{81}{16}.
\left(x+\frac{9}{4}\right)^{2}=\frac{49}{16}
Tauwehea x^{2}+\frac{9}{2}x+\frac{81}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{9}{4}=\frac{7}{4} x+\frac{9}{4}=-\frac{7}{4}
Whakarūnātia.
x=-\frac{1}{2} x=-4
Me tango \frac{9}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}