Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
Whakamahia te āhuatanga tohatoha hei whakarea te -x^{2} ki te x^{2}-13.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
Whakareatia te -13 ki te -1, ka 13.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
Me tāpiri te 42 ki ngā taha e rua.
-x^{4}+13x^{2}+42=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
-t^{2}+13t+42=0
Whakakapia te t mō te x^{2}.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -1 mō te a, te 13 mō te b, me te 42 mō te c i te ture pūrua.
t=\frac{-13±\sqrt{337}}{-2}
Mahia ngā tātaitai.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
Whakaotia te whārite t=\frac{-13±\sqrt{337}}{-2} ina he tōrunga te ±, ina he tōraro te ±.
x=-i\sqrt{-\frac{13-\sqrt{337}}{2}} x=i\sqrt{-\frac{13-\sqrt{337}}{2}} x=-\sqrt{\frac{\sqrt{337}+13}{2}} x=\sqrt{\frac{\sqrt{337}+13}{2}}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
Whakamahia te āhuatanga tohatoha hei whakarea te -x^{2} ki te x^{2}-13.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
Whakareatia te -13 ki te -1, ka 13.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
Me tāpiri te 42 ki ngā taha e rua.
-x^{4}+13x^{2}+42=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
-t^{2}+13t+42=0
Whakakapia te t mō te x^{2}.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -1 mō te a, te 13 mō te b, me te 42 mō te c i te ture pūrua.
t=\frac{-13±\sqrt{337}}{-2}
Mahia ngā tātaitai.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
Whakaotia te whārite t=\frac{-13±\sqrt{337}}{-2} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{2\sqrt{337}+26}}{2} x=-\frac{\sqrt{2\sqrt{337}+26}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.