Whakaoti mō x (complex solution)
x=\frac{i\sqrt{2\left(\sqrt{337}-13\right)}}{2}\approx 1.636697857i
x=-\frac{i\sqrt{2\left(\sqrt{337}-13\right)}}{2}\approx -0-1.636697857i
x = -\frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx -3.959643908
x = \frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx 3.959643908
Whakaoti mō x
x = -\frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx -3.959643908
x = \frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx 3.959643908
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
Whakamahia te āhuatanga tohatoha hei whakarea te -x^{2} ki te x^{2}-13.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
Whakareatia te -13 ki te -1, ka 13.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
Me tāpiri te 42 ki ngā taha e rua.
-x^{4}+13x^{2}+42=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
-t^{2}+13t+42=0
Whakakapia te t mō te x^{2}.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -1 mō te a, te 13 mō te b, me te 42 mō te c i te ture pūrua.
t=\frac{-13±\sqrt{337}}{-2}
Mahia ngā tātaitai.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
Whakaotia te whārite t=\frac{-13±\sqrt{337}}{-2} ina he tōrunga te ±, ina he tōraro te ±.
x=-i\sqrt{-\frac{13-\sqrt{337}}{2}} x=i\sqrt{-\frac{13-\sqrt{337}}{2}} x=-\sqrt{\frac{\sqrt{337}+13}{2}} x=\sqrt{\frac{\sqrt{337}+13}{2}}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
Whakamahia te āhuatanga tohatoha hei whakarea te -x^{2} ki te x^{2}-13.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
Whakareatia te -13 ki te -1, ka 13.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
Me tāpiri te 42 ki ngā taha e rua.
-x^{4}+13x^{2}+42=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
-t^{2}+13t+42=0
Whakakapia te t mō te x^{2}.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te -1 mō te a, te 13 mō te b, me te 42 mō te c i te ture pūrua.
t=\frac{-13±\sqrt{337}}{-2}
Mahia ngā tātaitai.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
Whakaotia te whārite t=\frac{-13±\sqrt{337}}{-2} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{2\sqrt{337}+26}}{2} x=-\frac{\sqrt{2\sqrt{337}+26}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}