Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=1 ab=-6=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=3 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(-x^{2}+3x\right)+\left(-2x+6\right)
Tuhia anō te -x^{2}+x+6 hei \left(-x^{2}+3x\right)+\left(-2x+6\right).
-x\left(x-3\right)-2\left(x-3\right)
Tauwehea te -x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-3\right)\left(-x-2\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-2
Hei kimi otinga whārite, me whakaoti te x-3=0 me te -x-2=0.
-x^{2}+x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+4\times 6}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-1±\sqrt{1+24}}{2\left(-1\right)}
Whakareatia 4 ki te 6.
x=\frac{-1±\sqrt{25}}{2\left(-1\right)}
Tāpiri 1 ki te 24.
x=\frac{-1±5}{2\left(-1\right)}
Tuhia te pūtakerua o te 25.
x=\frac{-1±5}{-2}
Whakareatia 2 ki te -1.
x=\frac{4}{-2}
Nā, me whakaoti te whārite x=\frac{-1±5}{-2} ina he tāpiri te ±. Tāpiri -1 ki te 5.
x=-2
Whakawehe 4 ki te -2.
x=-\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{-1±5}{-2} ina he tango te ±. Tango 5 mai i -1.
x=3
Whakawehe -6 ki te -2.
x=-2 x=3
Kua oti te whārite te whakatau.
-x^{2}+x+6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}+x+6-6=-6
Me tango 6 mai i ngā taha e rua o te whārite.
-x^{2}+x=-6
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
\frac{-x^{2}+x}{-1}=-\frac{6}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{1}{-1}x=-\frac{6}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-x=-\frac{6}{-1}
Whakawehe 1 ki te -1.
x^{2}-x=6
Whakawehe -6 ki te -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Tāpiri 6 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Whakarūnātia.
x=3 x=-2
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.