Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}+8x-13=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Pūrua 8.
x=\frac{-8±\sqrt{64+4\left(-13\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-8±\sqrt{64-52}}{2\left(-1\right)}
Whakareatia 4 ki te -13.
x=\frac{-8±\sqrt{12}}{2\left(-1\right)}
Tāpiri 64 ki te -52.
x=\frac{-8±2\sqrt{3}}{2\left(-1\right)}
Tuhia te pūtakerua o te 12.
x=\frac{-8±2\sqrt{3}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{3}-8}{-2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{3}}{-2} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{3}.
x=4-\sqrt{3}
Whakawehe -8+2\sqrt{3} ki te -2.
x=\frac{-2\sqrt{3}-8}{-2}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{3}}{-2} ina he tango te ±. Tango 2\sqrt{3} mai i -8.
x=\sqrt{3}+4
Whakawehe -8-2\sqrt{3} ki te -2.
-x^{2}+8x-13=-\left(x-\left(4-\sqrt{3}\right)\right)\left(x-\left(\sqrt{3}+4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4-\sqrt{3} mō te x_{1} me te 4+\sqrt{3} mō te x_{2}.