Whakaoti mō x
x=2
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=7 ab=-\left(-10\right)=10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,10 2,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
1+10=11 2+5=7
Tātaihia te tapeke mō ia takirua.
a=5 b=2
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(-x^{2}+5x\right)+\left(2x-10\right)
Tuhia anō te -x^{2}+7x-10 hei \left(-x^{2}+5x\right)+\left(2x-10\right).
-x\left(x-5\right)+2\left(x-5\right)
Tauwehea te -x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-5\right)\left(-x+2\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=2
Hei kimi otinga whārite, me whakaoti te x-5=0 me te -x+2=0.
-x^{2}+7x-10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 7 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Pūrua 7.
x=\frac{-7±\sqrt{49+4\left(-10\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-7±\sqrt{49-40}}{2\left(-1\right)}
Whakareatia 4 ki te -10.
x=\frac{-7±\sqrt{9}}{2\left(-1\right)}
Tāpiri 49 ki te -40.
x=\frac{-7±3}{2\left(-1\right)}
Tuhia te pūtakerua o te 9.
x=\frac{-7±3}{-2}
Whakareatia 2 ki te -1.
x=-\frac{4}{-2}
Nā, me whakaoti te whārite x=\frac{-7±3}{-2} ina he tāpiri te ±. Tāpiri -7 ki te 3.
x=2
Whakawehe -4 ki te -2.
x=-\frac{10}{-2}
Nā, me whakaoti te whārite x=\frac{-7±3}{-2} ina he tango te ±. Tango 3 mai i -7.
x=5
Whakawehe -10 ki te -2.
x=2 x=5
Kua oti te whārite te whakatau.
-x^{2}+7x-10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}+7x-10-\left(-10\right)=-\left(-10\right)
Me tāpiri 10 ki ngā taha e rua o te whārite.
-x^{2}+7x=-\left(-10\right)
Mā te tango i te -10 i a ia ake anō ka toe ko te 0.
-x^{2}+7x=10
Tango -10 mai i 0.
\frac{-x^{2}+7x}{-1}=\frac{10}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{7}{-1}x=\frac{10}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-7x=\frac{10}{-1}
Whakawehe 7 ki te -1.
x^{2}-7x=-10
Whakawehe 10 ki te -1.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
Tāpiri -10 ki te \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
Tauwehea te x^{2}-7x+\frac{49}{4}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
Whakarūnātia.
x=5 x=2
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}