Whakaoti mō x
x=2
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=5 ab=-\left(-6\right)=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=3 b=2
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(-x^{2}+3x\right)+\left(2x-6\right)
Tuhia anō te -x^{2}+5x-6 hei \left(-x^{2}+3x\right)+\left(2x-6\right).
-x\left(x-3\right)+2\left(x-3\right)
Tauwehea te -x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-3\right)\left(-x+2\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=2
Hei kimi otinga whārite, me whakaoti te x-3=0 me te -x+2=0.
-x^{2}+5x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 5 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Pūrua 5.
x=\frac{-5±\sqrt{25+4\left(-6\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-5±\sqrt{25-24}}{2\left(-1\right)}
Whakareatia 4 ki te -6.
x=\frac{-5±\sqrt{1}}{2\left(-1\right)}
Tāpiri 25 ki te -24.
x=\frac{-5±1}{2\left(-1\right)}
Tuhia te pūtakerua o te 1.
x=\frac{-5±1}{-2}
Whakareatia 2 ki te -1.
x=-\frac{4}{-2}
Nā, me whakaoti te whārite x=\frac{-5±1}{-2} ina he tāpiri te ±. Tāpiri -5 ki te 1.
x=2
Whakawehe -4 ki te -2.
x=-\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{-5±1}{-2} ina he tango te ±. Tango 1 mai i -5.
x=3
Whakawehe -6 ki te -2.
x=2 x=3
Kua oti te whārite te whakatau.
-x^{2}+5x-6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}+5x-6-\left(-6\right)=-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
-x^{2}+5x=-\left(-6\right)
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
-x^{2}+5x=6
Tango -6 mai i 0.
\frac{-x^{2}+5x}{-1}=\frac{6}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{5}{-1}x=\frac{6}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-5x=\frac{6}{-1}
Whakawehe 5 ki te -1.
x^{2}-5x=-6
Whakawehe 6 ki te -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
Tāpiri -6 ki te \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
Whakarūnātia.
x=3 x=2
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}