Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}-2x+3+8
Pahekotia te 2x me -4x, ka -2x.
-x^{2}-2x+11
Tāpirihia te 3 ki te 8, ka 11.
factor(-x^{2}-2x+3+8)
Pahekotia te 2x me -4x, ka -2x.
factor(-x^{2}-2x+11)
Tāpirihia te 3 ki te 8, ka 11.
-x^{2}-2x+11=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 11}}{2\left(-1\right)}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 11}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-2\right)±\sqrt{4+44}}{2\left(-1\right)}
Whakareatia 4 ki te 11.
x=\frac{-\left(-2\right)±\sqrt{48}}{2\left(-1\right)}
Tāpiri 4 ki te 44.
x=\frac{-\left(-2\right)±4\sqrt{3}}{2\left(-1\right)}
Tuhia te pūtakerua o te 48.
x=\frac{2±4\sqrt{3}}{2\left(-1\right)}
Ko te tauaro o -2 ko 2.
x=\frac{2±4\sqrt{3}}{-2}
Whakareatia 2 ki te -1.
x=\frac{4\sqrt{3}+2}{-2}
Nā, me whakaoti te whārite x=\frac{2±4\sqrt{3}}{-2} ina he tāpiri te ±. Tāpiri 2 ki te 4\sqrt{3}.
x=-2\sqrt{3}-1
Whakawehe 2+4\sqrt{3} ki te -2.
x=\frac{2-4\sqrt{3}}{-2}
Nā, me whakaoti te whārite x=\frac{2±4\sqrt{3}}{-2} ina he tango te ±. Tango 4\sqrt{3} mai i 2.
x=2\sqrt{3}-1
Whakawehe 2-4\sqrt{3} ki te -2.
-x^{2}-2x+11=-\left(x-\left(-2\sqrt{3}-1\right)\right)\left(x-\left(2\sqrt{3}-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1-2\sqrt{3} mō te x_{1} me te -1+2\sqrt{3} mō te x_{2}.