Whakaoti mō x
x=-3
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=2 ab=-15=-15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,15 -3,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
-1+15=14 -3+5=2
Tātaihia te tapeke mō ia takirua.
a=5 b=-3
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(-x^{2}+5x\right)+\left(-3x+15\right)
Tuhia anō te -x^{2}+2x+15 hei \left(-x^{2}+5x\right)+\left(-3x+15\right).
-x\left(x-5\right)-3\left(x-5\right)
Tauwehea te -x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-5\right)\left(-x-3\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-3
Hei kimi otinga whārite, me whakaoti te x-5=0 me te -x-3=0.
-x^{2}+2x+15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 2 mō b, me 15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 15}}{2\left(-1\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+4\times 15}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-2±\sqrt{4+60}}{2\left(-1\right)}
Whakareatia 4 ki te 15.
x=\frac{-2±\sqrt{64}}{2\left(-1\right)}
Tāpiri 4 ki te 60.
x=\frac{-2±8}{2\left(-1\right)}
Tuhia te pūtakerua o te 64.
x=\frac{-2±8}{-2}
Whakareatia 2 ki te -1.
x=\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{-2±8}{-2} ina he tāpiri te ±. Tāpiri -2 ki te 8.
x=-3
Whakawehe 6 ki te -2.
x=-\frac{10}{-2}
Nā, me whakaoti te whārite x=\frac{-2±8}{-2} ina he tango te ±. Tango 8 mai i -2.
x=5
Whakawehe -10 ki te -2.
x=-3 x=5
Kua oti te whārite te whakatau.
-x^{2}+2x+15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}+2x+15-15=-15
Me tango 15 mai i ngā taha e rua o te whārite.
-x^{2}+2x=-15
Mā te tango i te 15 i a ia ake anō ka toe ko te 0.
\frac{-x^{2}+2x}{-1}=-\frac{15}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{2}{-1}x=-\frac{15}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-2x=-\frac{15}{-1}
Whakawehe 2 ki te -1.
x^{2}-2x=15
Whakawehe -15 ki te -1.
x^{2}-2x+1=15+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=16
Tāpiri 15 ki te 1.
\left(x-1\right)^{2}=16
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=4 x-1=-4
Whakarūnātia.
x=5 x=-3
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}