Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-2x-1\leq 0
Me whakarea te koreōrite ki te -1 kia tōrunga ai te tau whakarea o te pū tino teitei i -x^{2}+2x+1. I te mea he tōraro a -1, ka huri te ahunga koreōrite.
x^{2}-2x-1=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-1\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -2 mō te b, me te -1 mō te c i te ture pūrua.
x=\frac{2±2\sqrt{2}}{2}
Mahia ngā tātaitai.
x=\sqrt{2}+1 x=1-\sqrt{2}
Whakaotia te whārite x=\frac{2±2\sqrt{2}}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(x-\left(\sqrt{2}+1\right)\right)\left(x-\left(1-\sqrt{2}\right)\right)\leq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\left(\sqrt{2}+1\right)\geq 0 x-\left(1-\sqrt{2}\right)\leq 0
Kia ≤0 te otinga, me ≥0 rawa tētahi uara o x-\left(\sqrt{2}+1\right) me x-\left(1-\sqrt{2}\right), me ≤0 anō te uara o tētahi. Whakaarohia te tauira ina ko x-\left(\sqrt{2}+1\right)\geq 0 me x-\left(1-\sqrt{2}\right)\leq 0.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-\left(1-\sqrt{2}\right)\geq 0 x-\left(\sqrt{2}+1\right)\leq 0
Whakaarohia te tauira ina ko x-\left(\sqrt{2}+1\right)\leq 0 me x-\left(1-\sqrt{2}\right)\geq 0.
x\in \begin{bmatrix}1-\sqrt{2},\sqrt{2}+1\end{bmatrix}
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left[1-\sqrt{2},\sqrt{2}+1\right].
x\in \begin{bmatrix}1-\sqrt{2},\sqrt{2}+1\end{bmatrix}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.