Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=14 ab=-\left(-40\right)=40
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-40. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,40 2,20 4,10 5,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 40.
1+40=41 2+20=22 4+10=14 5+8=13
Tātaihia te tapeke mō ia takirua.
a=10 b=4
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(-x^{2}+10x\right)+\left(4x-40\right)
Tuhia anō te -x^{2}+14x-40 hei \left(-x^{2}+10x\right)+\left(4x-40\right).
-x\left(x-10\right)+4\left(x-10\right)
Tauwehea te -x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-10\right)\left(-x+4\right)
Whakatauwehea atu te kīanga pātahi x-10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=10 x=4
Hei kimi otinga whārite, me whakaoti te x-10=0 me te -x+4=0.
-x^{2}+14x-40=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\left(-40\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 14 mō b, me -40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-1\right)\left(-40\right)}}{2\left(-1\right)}
Pūrua 14.
x=\frac{-14±\sqrt{196+4\left(-40\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-14±\sqrt{196-160}}{2\left(-1\right)}
Whakareatia 4 ki te -40.
x=\frac{-14±\sqrt{36}}{2\left(-1\right)}
Tāpiri 196 ki te -160.
x=\frac{-14±6}{2\left(-1\right)}
Tuhia te pūtakerua o te 36.
x=\frac{-14±6}{-2}
Whakareatia 2 ki te -1.
x=-\frac{8}{-2}
Nā, me whakaoti te whārite x=\frac{-14±6}{-2} ina he tāpiri te ±. Tāpiri -14 ki te 6.
x=4
Whakawehe -8 ki te -2.
x=-\frac{20}{-2}
Nā, me whakaoti te whārite x=\frac{-14±6}{-2} ina he tango te ±. Tango 6 mai i -14.
x=10
Whakawehe -20 ki te -2.
x=4 x=10
Kua oti te whārite te whakatau.
-x^{2}+14x-40=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-x^{2}+14x-40-\left(-40\right)=-\left(-40\right)
Me tāpiri 40 ki ngā taha e rua o te whārite.
-x^{2}+14x=-\left(-40\right)
Mā te tango i te -40 i a ia ake anō ka toe ko te 0.
-x^{2}+14x=40
Tango -40 mai i 0.
\frac{-x^{2}+14x}{-1}=\frac{40}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{14}{-1}x=\frac{40}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-14x=\frac{40}{-1}
Whakawehe 14 ki te -1.
x^{2}-14x=-40
Whakawehe 40 ki te -1.
x^{2}-14x+\left(-7\right)^{2}=-40+\left(-7\right)^{2}
Whakawehea te -14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7. Nā, tāpiria te pūrua o te -7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-14x+49=-40+49
Pūrua -7.
x^{2}-14x+49=9
Tāpiri -40 ki te 49.
\left(x-7\right)^{2}=9
Tauwehea x^{2}-14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-7=3 x-7=-3
Whakarūnātia.
x=10 x=4
Me tāpiri 7 ki ngā taha e rua o te whārite.