Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-xx+x\times 2=-1
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-x^{2}+x\times 2=-1
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+x\times 2+1=0
Me tāpiri te 1 ki ngā taha e rua.
-x^{2}+2x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 2 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)}}{2\left(-1\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-2±\sqrt{8}}{2\left(-1\right)}
Tāpiri 4 ki te 4.
x=\frac{-2±2\sqrt{2}}{2\left(-1\right)}
Tuhia te pūtakerua o te 8.
x=\frac{-2±2\sqrt{2}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{2}-2}{-2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{2}}{-2} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{2}.
x=1-\sqrt{2}
Whakawehe -2+2\sqrt{2} ki te -2.
x=\frac{-2\sqrt{2}-2}{-2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{2}}{-2} ina he tango te ±. Tango 2\sqrt{2} mai i -2.
x=\sqrt{2}+1
Whakawehe -2-2\sqrt{2} ki te -2.
x=1-\sqrt{2} x=\sqrt{2}+1
Kua oti te whārite te whakatau.
-xx+x\times 2=-1
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-x^{2}+x\times 2=-1
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+2x=-1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{1}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{2}{-1}x=-\frac{1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-2x=-\frac{1}{-1}
Whakawehe 2 ki te -1.
x^{2}-2x=1
Whakawehe -1 ki te -1.
x^{2}-2x+1=1+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=2
Tāpiri 1 ki te 1.
\left(x-1\right)^{2}=2
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\sqrt{2} x-1=-\sqrt{2}
Whakarūnātia.
x=\sqrt{2}+1 x=1-\sqrt{2}
Me tāpiri 1 ki ngā taha e rua o te whārite.