Whakaoti mō x
x = \frac{3 \sqrt{2} + 3}{2} \approx 3.621320344
x=\frac{3-3\sqrt{2}}{2}\approx -0.621320344
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
- x + \frac { 3 } { 4 } = - x ^ { 2 } + 2 x + 3
Tohaina
Kua tāruatia ki te papatopenga
-x+\frac{3}{4}+x^{2}=2x+3
Me tāpiri te x^{2} ki ngā taha e rua.
-x+\frac{3}{4}+x^{2}-2x=3
Tangohia te 2x mai i ngā taha e rua.
-x+\frac{3}{4}+x^{2}-2x-3=0
Tangohia te 3 mai i ngā taha e rua.
-x-\frac{9}{4}+x^{2}-2x=0
Tangohia te 3 i te \frac{3}{4}, ka -\frac{9}{4}.
-3x-\frac{9}{4}+x^{2}=0
Pahekotia te -x me -2x, ka -3x.
x^{2}-3x-\frac{9}{4}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-\frac{9}{4}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3 mō b, me -\frac{9}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-\frac{9}{4}\right)}}{2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+9}}{2}
Whakareatia -4 ki te -\frac{9}{4}.
x=\frac{-\left(-3\right)±\sqrt{18}}{2}
Tāpiri 9 ki te 9.
x=\frac{-\left(-3\right)±3\sqrt{2}}{2}
Tuhia te pūtakerua o te 18.
x=\frac{3±3\sqrt{2}}{2}
Ko te tauaro o -3 ko 3.
x=\frac{3\sqrt{2}+3}{2}
Nā, me whakaoti te whārite x=\frac{3±3\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri 3 ki te 3\sqrt{2}.
x=\frac{3-3\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{3±3\sqrt{2}}{2} ina he tango te ±. Tango 3\sqrt{2} mai i 3.
x=\frac{3\sqrt{2}+3}{2} x=\frac{3-3\sqrt{2}}{2}
Kua oti te whārite te whakatau.
-x+\frac{3}{4}+x^{2}=2x+3
Me tāpiri te x^{2} ki ngā taha e rua.
-x+\frac{3}{4}+x^{2}-2x=3
Tangohia te 2x mai i ngā taha e rua.
-x+x^{2}-2x=3-\frac{3}{4}
Tangohia te \frac{3}{4} mai i ngā taha e rua.
-x+x^{2}-2x=\frac{9}{4}
Tangohia te \frac{3}{4} i te 3, ka \frac{9}{4}.
-3x+x^{2}=\frac{9}{4}
Pahekotia te -x me -2x, ka -3x.
x^{2}-3x=\frac{9}{4}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{9+9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{9}{2}
Tāpiri \frac{9}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{2}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{3\sqrt{2}}{2} x-\frac{3}{2}=-\frac{3\sqrt{2}}{2}
Whakarūnātia.
x=\frac{3\sqrt{2}+3}{2} x=\frac{3-3\sqrt{2}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}