Tīpoka ki ngā ihirangi matua
Whakaoti mō v (complex solution)
Tick mark Image
Whakaoti mō v
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-vx=\sqrt[4]{3x-1}+1
Whakaraupapatia anō ngā kīanga tau.
\left(-x\right)v=\sqrt[4]{3x-1}+1
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)v}{-x}=\frac{\sqrt[4]{3x-1}+1}{-x}
Whakawehea ngā taha e rua ki te -x.
v=\frac{\sqrt[4]{3x-1}+1}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
v=-\frac{\sqrt[4]{3x-1}+1}{x}
Whakawehe \sqrt[4]{3x-1}+1 ki te -x.
-vx=\sqrt[4]{3x-1}+1
Whakaraupapatia anō ngā kīanga tau.
\left(-x\right)v=\sqrt[4]{3x-1}+1
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)v}{-x}=\frac{\sqrt[4]{3x-1}+1}{-x}
Whakawehea ngā taha e rua ki te -x.
v=\frac{\sqrt[4]{3x-1}+1}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
v=-\frac{\sqrt[4]{3x-1}+1}{x}
Whakawehe \sqrt[4]{3x-1}+1 ki te -x.