Whakaoti mō p (complex solution)
\left\{\begin{matrix}p=\frac{8x+\gamma +2}{x}\text{, }&x\neq 0\\p\in \mathrm{C}\text{, }&x=0\text{ and }\gamma =-2\end{matrix}\right.
Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=-\frac{\gamma +2}{8-p}\text{, }&p\neq 8\\x\in \mathrm{C}\text{, }&\gamma =-2\text{ and }p=8\end{matrix}\right.
Whakaoti mō p
\left\{\begin{matrix}p=\frac{8x+\gamma +2}{x}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }\gamma =-2\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=-\frac{\gamma +2}{8-p}\text{, }&p\neq 8\\x\in \mathrm{R}\text{, }&\gamma =-2\text{ and }p=8\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-p\right)x=-8x-2-\gamma
Tangohia te \gamma mai i ngā taha e rua.
-px=-8x-\gamma -2
Whakaraupapatia anō ngā kīanga tau.
\left(-x\right)p=-8x-\gamma -2
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)p}{-x}=\frac{-8x-\gamma -2}{-x}
Whakawehea ngā taha e rua ki te -x.
p=\frac{-8x-\gamma -2}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
p=\frac{\gamma +2}{x}+8
Whakawehe -8x-\gamma -2 ki te -x.
\left(-p\right)x+\gamma +8x=-2
Me tāpiri te 8x ki ngā taha e rua.
\left(-p\right)x+8x=-2-\gamma
Tangohia te \gamma mai i ngā taha e rua.
-px+8x=-\gamma -2
Whakaraupapatia anō ngā kīanga tau.
\left(-p+8\right)x=-\gamma -2
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(8-p\right)x=-\gamma -2
He hanga arowhānui tō te whārite.
\frac{\left(8-p\right)x}{8-p}=\frac{-\gamma -2}{8-p}
Whakawehea ngā taha e rua ki te -p+8.
x=\frac{-\gamma -2}{8-p}
Mā te whakawehe ki te -p+8 ka wetekia te whakareanga ki te -p+8.
x=-\frac{\gamma +2}{8-p}
Whakawehe -\gamma -2 ki te -p+8.
\left(-p\right)x=-8x-2-\gamma
Tangohia te \gamma mai i ngā taha e rua.
-px=-8x-\gamma -2
Whakaraupapatia anō ngā kīanga tau.
\left(-x\right)p=-8x-\gamma -2
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)p}{-x}=\frac{-8x-\gamma -2}{-x}
Whakawehea ngā taha e rua ki te -x.
p=\frac{-8x-\gamma -2}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
p=\frac{\gamma +2}{x}+8
Whakawehe -8x-\gamma -2 ki te -x.
\left(-p\right)x+\gamma +8x=-2
Me tāpiri te 8x ki ngā taha e rua.
\left(-p\right)x+8x=-2-\gamma
Tangohia te \gamma mai i ngā taha e rua.
-px+8x=-\gamma -2
Whakaraupapatia anō ngā kīanga tau.
\left(-p+8\right)x=-\gamma -2
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(8-p\right)x=-\gamma -2
He hanga arowhānui tō te whārite.
\frac{\left(8-p\right)x}{8-p}=\frac{-\gamma -2}{8-p}
Whakawehea ngā taha e rua ki te -p+8.
x=\frac{-\gamma -2}{8-p}
Mā te whakawehe ki te -p+8 ka wetekia te whakareanga ki te -p+8.
x=-\frac{\gamma +2}{8-p}
Whakawehe -\gamma -2 ki te -p+8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}