Whakaoti mō h
h=p-50
Whakaoti mō p
p=h+50
Tohaina
Kua tāruatia ki te papatopenga
-h+10=-p+60
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-h=-p+60-10
Tangohia te 10 mai i ngā taha e rua.
-h=-p+50
Tangohia te 10 i te 60, ka 50.
-h=50-p
He hanga arowhānui tō te whārite.
\frac{-h}{-1}=\frac{50-p}{-1}
Whakawehea ngā taha e rua ki te -1.
h=\frac{50-p}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
h=p-50
Whakawehe -p+50 ki te -1.
-p=-h+10-60
Tangohia te 60 mai i ngā taha e rua.
-p=-h-50
Tangohia te 60 i te 10, ka -50.
\frac{-p}{-1}=\frac{-h-50}{-1}
Whakawehea ngā taha e rua ki te -1.
p=\frac{-h-50}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
p=h+50
Whakawehe -h-50 ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}