Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-m^{2}+2m+3=9-3m
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3-m.
-m^{2}+2m+3-9=-3m
Tangohia te 9 mai i ngā taha e rua.
-m^{2}+2m-6=-3m
Tangohia te 9 i te 3, ka -6.
-m^{2}+2m-6+3m=0
Me tāpiri te 3m ki ngā taha e rua.
-m^{2}+5m-6=0
Pahekotia te 2m me 3m, ka 5m.
a+b=5 ab=-\left(-6\right)=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -m^{2}+am+bm-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=3 b=2
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(-m^{2}+3m\right)+\left(2m-6\right)
Tuhia anō te -m^{2}+5m-6 hei \left(-m^{2}+3m\right)+\left(2m-6\right).
-m\left(m-3\right)+2\left(m-3\right)
Tauwehea te -m i te tuatahi me te 2 i te rōpū tuarua.
\left(m-3\right)\left(-m+2\right)
Whakatauwehea atu te kīanga pātahi m-3 mā te whakamahi i te āhuatanga tātai tohatoha.
m=3 m=2
Hei kimi otinga whārite, me whakaoti te m-3=0 me te -m+2=0.
-m^{2}+2m+3=9-3m
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3-m.
-m^{2}+2m+3-9=-3m
Tangohia te 9 mai i ngā taha e rua.
-m^{2}+2m-6=-3m
Tangohia te 9 i te 3, ka -6.
-m^{2}+2m-6+3m=0
Me tāpiri te 3m ki ngā taha e rua.
-m^{2}+5m-6=0
Pahekotia te 2m me 3m, ka 5m.
m=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 5 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-5±\sqrt{25-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Pūrua 5.
m=\frac{-5±\sqrt{25+4\left(-6\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
m=\frac{-5±\sqrt{25-24}}{2\left(-1\right)}
Whakareatia 4 ki te -6.
m=\frac{-5±\sqrt{1}}{2\left(-1\right)}
Tāpiri 25 ki te -24.
m=\frac{-5±1}{2\left(-1\right)}
Tuhia te pūtakerua o te 1.
m=\frac{-5±1}{-2}
Whakareatia 2 ki te -1.
m=-\frac{4}{-2}
Nā, me whakaoti te whārite m=\frac{-5±1}{-2} ina he tāpiri te ±. Tāpiri -5 ki te 1.
m=2
Whakawehe -4 ki te -2.
m=-\frac{6}{-2}
Nā, me whakaoti te whārite m=\frac{-5±1}{-2} ina he tango te ±. Tango 1 mai i -5.
m=3
Whakawehe -6 ki te -2.
m=2 m=3
Kua oti te whārite te whakatau.
-m^{2}+2m+3=9-3m
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3-m.
-m^{2}+2m+3+3m=9
Me tāpiri te 3m ki ngā taha e rua.
-m^{2}+5m+3=9
Pahekotia te 2m me 3m, ka 5m.
-m^{2}+5m=9-3
Tangohia te 3 mai i ngā taha e rua.
-m^{2}+5m=6
Tangohia te 3 i te 9, ka 6.
\frac{-m^{2}+5m}{-1}=\frac{6}{-1}
Whakawehea ngā taha e rua ki te -1.
m^{2}+\frac{5}{-1}m=\frac{6}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
m^{2}-5m=\frac{6}{-1}
Whakawehe 5 ki te -1.
m^{2}-5m=-6
Whakawehe 6 ki te -1.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-5m+\frac{25}{4}=-6+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-5m+\frac{25}{4}=\frac{1}{4}
Tāpiri -6 ki te \frac{25}{4}.
\left(m-\frac{5}{2}\right)^{2}=\frac{1}{4}
Tauwehea m^{2}-5m+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{5}{2}=\frac{1}{2} m-\frac{5}{2}=-\frac{1}{2}
Whakarūnātia.
m=3 m=2
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.