Whakaoti mō f
f=-\frac{3}{5}-\frac{2}{3x}
x\neq 0
Whakaoti mō x
x=-\frac{10}{3\left(5f+3\right)}
f\neq -\frac{3}{5}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-fx=\frac{3}{5}x+\frac{2}{3}
Whakaraupapatia anō ngā kīanga tau.
\left(-x\right)f=\frac{3x}{5}+\frac{2}{3}
He hanga arowhānui tō te whārite.
\frac{\left(-x\right)f}{-x}=\frac{\frac{3x}{5}+\frac{2}{3}}{-x}
Whakawehea ngā taha e rua ki te -x.
f=\frac{\frac{3x}{5}+\frac{2}{3}}{-x}
Mā te whakawehe ki te -x ka wetekia te whakareanga ki te -x.
f=-\frac{3}{5}-\frac{2}{3x}
Whakawehe \frac{3x}{5}+\frac{2}{3} ki te -x.
\left(-f\right)x-\frac{3}{5}x=\frac{2}{3}
Tangohia te \frac{3}{5}x mai i ngā taha e rua.
-fx-\frac{3}{5}x=\frac{2}{3}
Whakaraupapatia anō ngā kīanga tau.
\left(-f-\frac{3}{5}\right)x=\frac{2}{3}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(-f-\frac{3}{5}\right)x}{-f-\frac{3}{5}}=\frac{\frac{2}{3}}{-f-\frac{3}{5}}
Whakawehea ngā taha e rua ki te -f-\frac{3}{5}.
x=\frac{\frac{2}{3}}{-f-\frac{3}{5}}
Mā te whakawehe ki te -f-\frac{3}{5} ka wetekia te whakareanga ki te -f-\frac{3}{5}.
x=-\frac{10}{3\left(5f+3\right)}
Whakawehe \frac{2}{3} ki te -f-\frac{3}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}