Tīpoka ki ngā ihirangi matua
Whakaoti mō f
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-f\right)\left(-3.6\right)=\frac{1}{2}\times 0.6\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Whakareatia te -6 ki te 0.6, ka -3.6.
\left(-f\right)\left(-3.6\right)=\frac{1}{2}\times \frac{3}{5}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Me tahuri ki tau ā-ira 0.6 ki te hautau \frac{6}{10}. Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\left(-f\right)\left(-3.6\right)=\frac{1\times 3}{2\times 5}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Me whakarea te \frac{1}{2} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\left(-f\right)\left(-3.6\right)=\frac{3}{10}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{2\times 5}.
\left(-f\right)\left(-3.6\right)=3\times 0.3-\frac{1}{2}\times 0.6\times 16
Me whakakore te 10 me te 10.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1}{2}\times 0.6\times 16
Whakareatia te 3 ki te 0.3, ka 0.9.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1}{2}\times \frac{3}{5}\times 16
Me tahuri ki tau ā-ira 0.6 ki te hautau \frac{6}{10}. Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1\times 3}{2\times 5}\times 16
Me whakarea te \frac{1}{2} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\left(-f\right)\left(-3.6\right)=0.9-\frac{3}{10}\times 16
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{2\times 5}.
\left(-f\right)\left(-3.6\right)=0.9-\frac{3\times 16}{10}
Tuhia te \frac{3}{10}\times 16 hei hautanga kotahi.
\left(-f\right)\left(-3.6\right)=0.9-\frac{48}{10}
Whakareatia te 3 ki te 16, ka 48.
\left(-f\right)\left(-3.6\right)=0.9-\frac{24}{5}
Whakahekea te hautanga \frac{48}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\left(-f\right)\left(-3.6\right)=\frac{9}{10}-\frac{24}{5}
Me tahuri ki tau ā-ira 0.9 ki te hautau \frac{9}{10}.
\left(-f\right)\left(-3.6\right)=\frac{9}{10}-\frac{48}{10}
Ko te maha noa iti rawa atu o 10 me 5 ko 10. Me tahuri \frac{9}{10} me \frac{24}{5} ki te hautau me te tautūnga 10.
\left(-f\right)\left(-3.6\right)=\frac{9-48}{10}
Tā te mea he rite te tauraro o \frac{9}{10} me \frac{48}{10}, me tango rāua mā te tango i ō raua taurunga.
\left(-f\right)\left(-3.6\right)=-\frac{39}{10}
Tangohia te 48 i te 9, ka -39.
-f=\frac{-\frac{39}{10}}{-3.6}
Whakawehea ngā taha e rua ki te -3.6.
-f=\frac{-39}{10\left(-3.6\right)}
Tuhia te \frac{-\frac{39}{10}}{-3.6} hei hautanga kotahi.
-f=\frac{-39}{-36}
Whakareatia te 10 ki te -3.6, ka -36.
-f=\frac{13}{12}
Whakahekea te hautanga \frac{-39}{-36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.
f=-\frac{13}{12}
Me whakarea ngā taha e rua ki te -1.