Whakaoti mō f
f = -\frac{13}{12} = -1\frac{1}{12} \approx -1.083333333
Tohaina
Kua tāruatia ki te papatopenga
\left(-f\right)\left(-3.6\right)=\frac{1}{2}\times 0.6\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Whakareatia te -6 ki te 0.6, ka -3.6.
\left(-f\right)\left(-3.6\right)=\frac{1}{2}\times \frac{3}{5}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Me tahuri ki tau ā-ira 0.6 ki te hautau \frac{6}{10}. Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\left(-f\right)\left(-3.6\right)=\frac{1\times 3}{2\times 5}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Me whakarea te \frac{1}{2} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\left(-f\right)\left(-3.6\right)=\frac{3}{10}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{2\times 5}.
\left(-f\right)\left(-3.6\right)=3\times 0.3-\frac{1}{2}\times 0.6\times 16
Me whakakore te 10 me te 10.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1}{2}\times 0.6\times 16
Whakareatia te 3 ki te 0.3, ka 0.9.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1}{2}\times \frac{3}{5}\times 16
Me tahuri ki tau ā-ira 0.6 ki te hautau \frac{6}{10}. Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1\times 3}{2\times 5}\times 16
Me whakarea te \frac{1}{2} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\left(-f\right)\left(-3.6\right)=0.9-\frac{3}{10}\times 16
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{2\times 5}.
\left(-f\right)\left(-3.6\right)=0.9-\frac{3\times 16}{10}
Tuhia te \frac{3}{10}\times 16 hei hautanga kotahi.
\left(-f\right)\left(-3.6\right)=0.9-\frac{48}{10}
Whakareatia te 3 ki te 16, ka 48.
\left(-f\right)\left(-3.6\right)=0.9-\frac{24}{5}
Whakahekea te hautanga \frac{48}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\left(-f\right)\left(-3.6\right)=\frac{9}{10}-\frac{24}{5}
Me tahuri ki tau ā-ira 0.9 ki te hautau \frac{9}{10}.
\left(-f\right)\left(-3.6\right)=\frac{9}{10}-\frac{48}{10}
Ko te maha noa iti rawa atu o 10 me 5 ko 10. Me tahuri \frac{9}{10} me \frac{24}{5} ki te hautau me te tautūnga 10.
\left(-f\right)\left(-3.6\right)=\frac{9-48}{10}
Tā te mea he rite te tauraro o \frac{9}{10} me \frac{48}{10}, me tango rāua mā te tango i ō raua taurunga.
\left(-f\right)\left(-3.6\right)=-\frac{39}{10}
Tangohia te 48 i te 9, ka -39.
-f=\frac{-\frac{39}{10}}{-3.6}
Whakawehea ngā taha e rua ki te -3.6.
-f=\frac{-39}{10\left(-3.6\right)}
Tuhia te \frac{-\frac{39}{10}}{-3.6} hei hautanga kotahi.
-f=\frac{-39}{-36}
Whakareatia te 10 ki te -3.6, ka -36.
-f=\frac{13}{12}
Whakahekea te hautanga \frac{-39}{-36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.
f=-\frac{13}{12}
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}