Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki b
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-b^{1}\frac{\mathrm{d}}{\mathrm{d}b}(b^{1})+b^{1}\frac{\mathrm{d}}{\mathrm{d}b}(-b^{1})
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
-b^{1}b^{1-1}+b^{1}\left(-1\right)b^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-b^{1}b^{0}+b^{1}\left(-1\right)b^{0}
Whakarūnātia.
-b^{1}-b^{1}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\left(-1-1\right)b^{1}
Pahekotia ngā kīanga tau ōrite.
-2b^{1}
Tāpiri -1 ki te -1.
-2b
Mō tētahi kupu t, t^{1}=t.
-b^{2}
Whakareatia te b ki te b, ka b^{2}.