Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a\left(-1+4a\right)
Tauwehea te a.
4a^{2}-a=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-1\right)±\sqrt{1}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-1\right)±1}{2\times 4}
Tuhia te pūtakerua o te 1.
a=\frac{1±1}{2\times 4}
Ko te tauaro o -1 ko 1.
a=\frac{1±1}{8}
Whakareatia 2 ki te 4.
a=\frac{2}{8}
Nā, me whakaoti te whārite a=\frac{1±1}{8} ina he tāpiri te ±. Tāpiri 1 ki te 1.
a=\frac{1}{4}
Whakahekea te hautanga \frac{2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a=\frac{0}{8}
Nā, me whakaoti te whārite a=\frac{1±1}{8} ina he tango te ±. Tango 1 mai i 1.
a=0
Whakawehe 0 ki te 8.
4a^{2}-a=4\left(a-\frac{1}{4}\right)a
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{4} mō te x_{1} me te 0 mō te x_{2}.
4a^{2}-a=4\times \frac{4a-1}{4}a
Tango \frac{1}{4} mai i a mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4a^{2}-a=\left(4a-1\right)a
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.