Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-17x^{2}-12x+7+15x
Pahekotia te -9x^{2} me -8x^{2}, ka -17x^{2}.
-17x^{2}+3x+7
Pahekotia te -12x me 15x, ka 3x.
factor(-17x^{2}-12x+7+15x)
Pahekotia te -9x^{2} me -8x^{2}, ka -17x^{2}.
factor(-17x^{2}+3x+7)
Pahekotia te -12x me 15x, ka 3x.
-17x^{2}+3x+7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-17\right)\times 7}}{2\left(-17\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{9-4\left(-17\right)\times 7}}{2\left(-17\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+68\times 7}}{2\left(-17\right)}
Whakareatia -4 ki te -17.
x=\frac{-3±\sqrt{9+476}}{2\left(-17\right)}
Whakareatia 68 ki te 7.
x=\frac{-3±\sqrt{485}}{2\left(-17\right)}
Tāpiri 9 ki te 476.
x=\frac{-3±\sqrt{485}}{-34}
Whakareatia 2 ki te -17.
x=\frac{\sqrt{485}-3}{-34}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{485}}{-34} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{485}.
x=\frac{3-\sqrt{485}}{34}
Whakawehe -3+\sqrt{485} ki te -34.
x=\frac{-\sqrt{485}-3}{-34}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{485}}{-34} ina he tango te ±. Tango \sqrt{485} mai i -3.
x=\frac{\sqrt{485}+3}{34}
Whakawehe -3-\sqrt{485} ki te -34.
-17x^{2}+3x+7=-17\left(x-\frac{3-\sqrt{485}}{34}\right)\left(x-\frac{\sqrt{485}+3}{34}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3-\sqrt{485}}{34} mō te x_{1} me te \frac{3+\sqrt{485}}{34} mō te x_{2}.