Whakaoti mō x
x=\frac{\sqrt{77}}{3}+1\approx 3.924988129
x=-\frac{\sqrt{77}}{3}+1\approx -1.924988129
Graph
Tohaina
Kua tāruatia ki te papatopenga
-9x^{2}+18x+68=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\left(-9\right)\times 68}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, 18 mō b, me 68 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-9\right)\times 68}}{2\left(-9\right)}
Pūrua 18.
x=\frac{-18±\sqrt{324+36\times 68}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-18±\sqrt{324+2448}}{2\left(-9\right)}
Whakareatia 36 ki te 68.
x=\frac{-18±\sqrt{2772}}{2\left(-9\right)}
Tāpiri 324 ki te 2448.
x=\frac{-18±6\sqrt{77}}{2\left(-9\right)}
Tuhia te pūtakerua o te 2772.
x=\frac{-18±6\sqrt{77}}{-18}
Whakareatia 2 ki te -9.
x=\frac{6\sqrt{77}-18}{-18}
Nā, me whakaoti te whārite x=\frac{-18±6\sqrt{77}}{-18} ina he tāpiri te ±. Tāpiri -18 ki te 6\sqrt{77}.
x=-\frac{\sqrt{77}}{3}+1
Whakawehe -18+6\sqrt{77} ki te -18.
x=\frac{-6\sqrt{77}-18}{-18}
Nā, me whakaoti te whārite x=\frac{-18±6\sqrt{77}}{-18} ina he tango te ±. Tango 6\sqrt{77} mai i -18.
x=\frac{\sqrt{77}}{3}+1
Whakawehe -18-6\sqrt{77} ki te -18.
x=-\frac{\sqrt{77}}{3}+1 x=\frac{\sqrt{77}}{3}+1
Kua oti te whārite te whakatau.
-9x^{2}+18x+68=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-9x^{2}+18x+68-68=-68
Me tango 68 mai i ngā taha e rua o te whārite.
-9x^{2}+18x=-68
Mā te tango i te 68 i a ia ake anō ka toe ko te 0.
\frac{-9x^{2}+18x}{-9}=-\frac{68}{-9}
Whakawehea ngā taha e rua ki te -9.
x^{2}+\frac{18}{-9}x=-\frac{68}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
x^{2}-2x=-\frac{68}{-9}
Whakawehe 18 ki te -9.
x^{2}-2x=\frac{68}{9}
Whakawehe -68 ki te -9.
x^{2}-2x+1=\frac{68}{9}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{77}{9}
Tāpiri \frac{68}{9} ki te 1.
\left(x-1\right)^{2}=\frac{77}{9}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{77}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{\sqrt{77}}{3} x-1=-\frac{\sqrt{77}}{3}
Whakarūnātia.
x=\frac{\sqrt{77}}{3}+1 x=-\frac{\sqrt{77}}{3}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}