Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-9x^{2}+18x+68=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}-4\left(-9\right)\times 68}}{2\left(-9\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{324-4\left(-9\right)\times 68}}{2\left(-9\right)}
Pūrua 18.
x=\frac{-18±\sqrt{324+36\times 68}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-18±\sqrt{324+2448}}{2\left(-9\right)}
Whakareatia 36 ki te 68.
x=\frac{-18±\sqrt{2772}}{2\left(-9\right)}
Tāpiri 324 ki te 2448.
x=\frac{-18±6\sqrt{77}}{2\left(-9\right)}
Tuhia te pūtakerua o te 2772.
x=\frac{-18±6\sqrt{77}}{-18}
Whakareatia 2 ki te -9.
x=\frac{6\sqrt{77}-18}{-18}
Nā, me whakaoti te whārite x=\frac{-18±6\sqrt{77}}{-18} ina he tāpiri te ±. Tāpiri -18 ki te 6\sqrt{77}.
x=-\frac{\sqrt{77}}{3}+1
Whakawehe -18+6\sqrt{77} ki te -18.
x=\frac{-6\sqrt{77}-18}{-18}
Nā, me whakaoti te whārite x=\frac{-18±6\sqrt{77}}{-18} ina he tango te ±. Tango 6\sqrt{77} mai i -18.
x=\frac{\sqrt{77}}{3}+1
Whakawehe -18-6\sqrt{77} ki te -18.
-9x^{2}+18x+68=-9\left(x-\left(-\frac{\sqrt{77}}{3}+1\right)\right)\left(x-\left(\frac{\sqrt{77}}{3}+1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1-\frac{\sqrt{77}}{3} mō te x_{1} me te 1+\frac{\sqrt{77}}{3} mō te x_{2}.