Whakaoti mō x
x=-\frac{1}{2}=-0.5
x = -\frac{8}{3} = -2\frac{2}{3} \approx -2.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
-9x=6x^{2}+8+10x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x^{2}+4.
-9x-6x^{2}=8+10x
Tangohia te 6x^{2} mai i ngā taha e rua.
-9x-6x^{2}-8=10x
Tangohia te 8 mai i ngā taha e rua.
-9x-6x^{2}-8-10x=0
Tangohia te 10x mai i ngā taha e rua.
-19x-6x^{2}-8=0
Pahekotia te -9x me -10x, ka -19x.
-6x^{2}-19x-8=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-19 ab=-6\left(-8\right)=48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -6x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Tātaihia te tapeke mō ia takirua.
a=-3 b=-16
Ko te otinga te takirua ka hoatu i te tapeke -19.
\left(-6x^{2}-3x\right)+\left(-16x-8\right)
Tuhia anō te -6x^{2}-19x-8 hei \left(-6x^{2}-3x\right)+\left(-16x-8\right).
-3x\left(2x+1\right)-8\left(2x+1\right)
Tauwehea te -3x i te tuatahi me te -8 i te rōpū tuarua.
\left(2x+1\right)\left(-3x-8\right)
Whakatauwehea atu te kīanga pātahi 2x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{2} x=-\frac{8}{3}
Hei kimi otinga whārite, me whakaoti te 2x+1=0 me te -3x-8=0.
-9x=6x^{2}+8+10x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x^{2}+4.
-9x-6x^{2}=8+10x
Tangohia te 6x^{2} mai i ngā taha e rua.
-9x-6x^{2}-8=10x
Tangohia te 8 mai i ngā taha e rua.
-9x-6x^{2}-8-10x=0
Tangohia te 10x mai i ngā taha e rua.
-19x-6x^{2}-8=0
Pahekotia te -9x me -10x, ka -19x.
-6x^{2}-19x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, -19 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±\sqrt{361-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
Pūrua -19.
x=\frac{-\left(-19\right)±\sqrt{361+24\left(-8\right)}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-\left(-19\right)±\sqrt{361-192}}{2\left(-6\right)}
Whakareatia 24 ki te -8.
x=\frac{-\left(-19\right)±\sqrt{169}}{2\left(-6\right)}
Tāpiri 361 ki te -192.
x=\frac{-\left(-19\right)±13}{2\left(-6\right)}
Tuhia te pūtakerua o te 169.
x=\frac{19±13}{2\left(-6\right)}
Ko te tauaro o -19 ko 19.
x=\frac{19±13}{-12}
Whakareatia 2 ki te -6.
x=\frac{32}{-12}
Nā, me whakaoti te whārite x=\frac{19±13}{-12} ina he tāpiri te ±. Tāpiri 19 ki te 13.
x=-\frac{8}{3}
Whakahekea te hautanga \frac{32}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{6}{-12}
Nā, me whakaoti te whārite x=\frac{19±13}{-12} ina he tango te ±. Tango 13 mai i 19.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{6}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{8}{3} x=-\frac{1}{2}
Kua oti te whārite te whakatau.
-9x=6x^{2}+8+10x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x^{2}+4.
-9x-6x^{2}=8+10x
Tangohia te 6x^{2} mai i ngā taha e rua.
-9x-6x^{2}-10x=8
Tangohia te 10x mai i ngā taha e rua.
-19x-6x^{2}=8
Pahekotia te -9x me -10x, ka -19x.
-6x^{2}-19x=8
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-6x^{2}-19x}{-6}=\frac{8}{-6}
Whakawehea ngā taha e rua ki te -6.
x^{2}+\left(-\frac{19}{-6}\right)x=\frac{8}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x^{2}+\frac{19}{6}x=\frac{8}{-6}
Whakawehe -19 ki te -6.
x^{2}+\frac{19}{6}x=-\frac{4}{3}
Whakahekea te hautanga \frac{8}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{19}{6}x+\left(\frac{19}{12}\right)^{2}=-\frac{4}{3}+\left(\frac{19}{12}\right)^{2}
Whakawehea te \frac{19}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{19}{12}. Nā, tāpiria te pūrua o te \frac{19}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{19}{6}x+\frac{361}{144}=-\frac{4}{3}+\frac{361}{144}
Pūruatia \frac{19}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{19}{6}x+\frac{361}{144}=\frac{169}{144}
Tāpiri -\frac{4}{3} ki te \frac{361}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{19}{12}\right)^{2}=\frac{169}{144}
Tauwehea x^{2}+\frac{19}{6}x+\frac{361}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{19}{12}=\frac{13}{12} x+\frac{19}{12}=-\frac{13}{12}
Whakarūnātia.
x=-\frac{1}{2} x=-\frac{8}{3}
Me tango \frac{19}{12} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}