Whakaoti mō r
r=0
Tohaina
Kua tāruatia ki te papatopenga
-9r-27+11=-9\left(11r+1\right)-7
Whakamahia te āhuatanga tohatoha hei whakarea te -9 ki te r+3.
-9r-16=-9\left(11r+1\right)-7
Tāpirihia te -27 ki te 11, ka -16.
-9r-16=-99r-9-7
Whakamahia te āhuatanga tohatoha hei whakarea te -9 ki te 11r+1.
-9r-16=-99r-16
Tangohia te 7 i te -9, ka -16.
-9r-16+99r=-16
Me tāpiri te 99r ki ngā taha e rua.
90r-16=-16
Pahekotia te -9r me 99r, ka 90r.
90r=-16+16
Me tāpiri te 16 ki ngā taha e rua.
90r=0
Tāpirihia te -16 ki te 16, ka 0.
r=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te 90 e ōrite ki 0, me ōrite pū te r ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}