Aromātai
\frac{3}{2}=1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Pātaitai
Polynomial
- 9 \cdot \frac { n } { 3 n } - \frac { 3 n } { n } \times \frac { 3 n } { n - 3 n }
Tohaina
Kua tāruatia ki te papatopenga
-9\times \frac{1}{3}-\frac{3n}{n}\times \frac{3n}{n-3n}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{-9}{3}-\frac{3n}{n}\times \frac{3n}{n-3n}
Whakareatia te -9 ki te \frac{1}{3}, ka \frac{-9}{3}.
-3-\frac{3n}{n}\times \frac{3n}{n-3n}
Whakawehea te -9 ki te 3, kia riro ko -3.
-3-3\times \frac{3n}{n-3n}
Me whakakore tahi te n i te taurunga me te tauraro.
-3-3\times \frac{3n}{-2n}
Pahekotia te n me -3n, ka -2n.
-3-3\times \frac{3}{-2}
Me whakakore tahi te n i te taurunga me te tauraro.
-3-3\left(-\frac{3}{2}\right)
Ka taea te hautanga \frac{3}{-2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
-3-\frac{3\left(-3\right)}{2}
Tuhia te 3\left(-\frac{3}{2}\right) hei hautanga kotahi.
-3-\frac{-9}{2}
Whakareatia te 3 ki te -3, ka -9.
-3-\left(-\frac{9}{2}\right)
Ka taea te hautanga \frac{-9}{2} te tuhi anō ko -\frac{9}{2} mā te tango i te tohu tōraro.
-3+\frac{9}{2}
Ko te tauaro o -\frac{9}{2} ko \frac{9}{2}.
-\frac{6}{2}+\frac{9}{2}
Me tahuri te -3 ki te hautau -\frac{6}{2}.
\frac{-6+9}{2}
Tā te mea he rite te tauraro o -\frac{6}{2} me \frac{9}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{2}
Tāpirihia te -6 ki te 9, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}