Whakaoti mō x_1
x_{1}=\frac{x_{2}}{4}+\frac{3x_{4}}{4}-\frac{5x_{3}}{8}-\frac{1}{8}
Whakaoti mō x_2
x_{2}=\frac{5x_{3}}{2}+4x_{1}-3x_{4}+\frac{1}{2}
Tohaina
Kua tāruatia ki te papatopenga
-8x_{1}-5x_{3}+6x_{4}=1-2x_{2}
Tangohia te 2x_{2} mai i ngā taha e rua.
-8x_{1}+6x_{4}=1-2x_{2}+5x_{3}
Me tāpiri te 5x_{3} ki ngā taha e rua.
-8x_{1}=1-2x_{2}+5x_{3}-6x_{4}
Tangohia te 6x_{4} mai i ngā taha e rua.
-8x_{1}=1-6x_{4}+5x_{3}-2x_{2}
He hanga arowhānui tō te whārite.
\frac{-8x_{1}}{-8}=\frac{1-6x_{4}+5x_{3}-2x_{2}}{-8}
Whakawehea ngā taha e rua ki te -8.
x_{1}=\frac{1-6x_{4}+5x_{3}-2x_{2}}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x_{1}=\frac{x_{2}}{4}+\frac{3x_{4}}{4}-\frac{5x_{3}}{8}-\frac{1}{8}
Whakawehe 1-2x_{2}+5x_{3}-6x_{4} ki te -8.
2x_{2}-5x_{3}+6x_{4}=1+8x_{1}
Me tāpiri te 8x_{1} ki ngā taha e rua.
2x_{2}+6x_{4}=1+8x_{1}+5x_{3}
Me tāpiri te 5x_{3} ki ngā taha e rua.
2x_{2}=1+8x_{1}+5x_{3}-6x_{4}
Tangohia te 6x_{4} mai i ngā taha e rua.
2x_{2}=8x_{1}+5x_{3}-6x_{4}+1
He hanga arowhānui tō te whārite.
\frac{2x_{2}}{2}=\frac{8x_{1}+5x_{3}-6x_{4}+1}{2}
Whakawehea ngā taha e rua ki te 2.
x_{2}=\frac{8x_{1}+5x_{3}-6x_{4}+1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x_{2}=\frac{5x_{3}}{2}+4x_{1}-3x_{4}+\frac{1}{2}
Whakawehe 1+8x_{1}+5x_{3}-6x_{4} ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}