Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-8x^{4}\right)^{1}\times \frac{1}{-4x^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\left(-8\right)^{1}\left(x^{4}\right)^{1}\times \frac{1}{-4}\times \frac{1}{x^{3}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
\left(-8\right)^{1}\times \frac{1}{-4}\left(x^{4}\right)^{1}\times \frac{1}{x^{3}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
\left(-8\right)^{1}\times \frac{1}{-4}x^{4}x^{3\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
\left(-8\right)^{1}\times \frac{1}{-4}x^{4}x^{-3}
Whakareatia 3 ki te -1.
\left(-8\right)^{1}\times \frac{1}{-4}x^{4-3}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\left(-8\right)^{1}\times \frac{1}{-4}x^{1}
Tāpirihia ngā taupū 4 me -3.
-8\times \frac{1}{-4}x^{1}
Hīkina te -8 ki te pū 1.
-8\left(-\frac{1}{4}\right)x^{1}
Hīkina te -4 ki te pū -1.
2x^{1}
Whakareatia -8 ki te -\frac{1}{4}.
2x
Mō tētahi kupu t, t^{1}=t.
\frac{\left(-8\right)^{1}x^{4}}{\left(-4\right)^{1}x^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{\left(-8\right)^{1}x^{4-3}}{\left(-4\right)^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(-8\right)^{1}x^{1}}{\left(-4\right)^{1}}
Tango 3 mai i 4.
2x^{1}
Whakawehe -8 ki te -4.
2x
Mō tētahi kupu t, t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{8}{-4}\right)x^{4-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})
Mahia ngā tātaitanga.
2x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
2x^{0}
Mahia ngā tātaitanga.
2\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
2
Mō tētahi kupu t, t\times 1=t me 1t=t.