Aromātai
\left(x-3\right)\left(x+1\right)
Tauwehe
\left(x-3\right)\left(x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+3-6-2x
Pahekotia te -8x^{2} me 9x^{2}, ka x^{2}.
x^{2}-3-2x
Tangohia te 6 i te 3, ka -3.
x^{2}-2x-3
Whakarea ka paheko i ngā kīanga tau ōrite.
a+b=-2 ab=1\left(-3\right)=-3
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-3 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-3x\right)+\left(x-3\right)
Tuhia anō te x^{2}-2x-3 hei \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Whakatauwehea atu x i te x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}