Tauwehe
\left(3-4r\right)\left(2r-5\right)
Aromātai
\left(3-4r\right)\left(2r-5\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=26 ab=-8\left(-15\right)=120
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -8r^{2}+ar+br-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 120.
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
Tātaihia te tapeke mō ia takirua.
a=20 b=6
Ko te otinga te takirua ka hoatu i te tapeke 26.
\left(-8r^{2}+20r\right)+\left(6r-15\right)
Tuhia anō te -8r^{2}+26r-15 hei \left(-8r^{2}+20r\right)+\left(6r-15\right).
-4r\left(2r-5\right)+3\left(2r-5\right)
Tauwehea te -4r i te tuatahi me te 3 i te rōpū tuarua.
\left(2r-5\right)\left(-4r+3\right)
Whakatauwehea atu te kīanga pātahi 2r-5 mā te whakamahi i te āhuatanga tātai tohatoha.
-8r^{2}+26r-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
r=\frac{-26±\sqrt{26^{2}-4\left(-8\right)\left(-15\right)}}{2\left(-8\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-26±\sqrt{676-4\left(-8\right)\left(-15\right)}}{2\left(-8\right)}
Pūrua 26.
r=\frac{-26±\sqrt{676+32\left(-15\right)}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
r=\frac{-26±\sqrt{676-480}}{2\left(-8\right)}
Whakareatia 32 ki te -15.
r=\frac{-26±\sqrt{196}}{2\left(-8\right)}
Tāpiri 676 ki te -480.
r=\frac{-26±14}{2\left(-8\right)}
Tuhia te pūtakerua o te 196.
r=\frac{-26±14}{-16}
Whakareatia 2 ki te -8.
r=-\frac{12}{-16}
Nā, me whakaoti te whārite r=\frac{-26±14}{-16} ina he tāpiri te ±. Tāpiri -26 ki te 14.
r=\frac{3}{4}
Whakahekea te hautanga \frac{-12}{-16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
r=-\frac{40}{-16}
Nā, me whakaoti te whārite r=\frac{-26±14}{-16} ina he tango te ±. Tango 14 mai i -26.
r=\frac{5}{2}
Whakahekea te hautanga \frac{-40}{-16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
-8r^{2}+26r-15=-8\left(r-\frac{3}{4}\right)\left(r-\frac{5}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{4} mō te x_{1} me te \frac{5}{2} mō te x_{2}.
-8r^{2}+26r-15=-8\times \frac{-4r+3}{-4}\left(r-\frac{5}{2}\right)
Tango \frac{3}{4} mai i r mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-8r^{2}+26r-15=-8\times \frac{-4r+3}{-4}\times \frac{-2r+5}{-2}
Tango \frac{5}{2} mai i r mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-8r^{2}+26r-15=-8\times \frac{\left(-4r+3\right)\left(-2r+5\right)}{-4\left(-2\right)}
Whakareatia \frac{-4r+3}{-4} ki te \frac{-2r+5}{-2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-8r^{2}+26r-15=-8\times \frac{\left(-4r+3\right)\left(-2r+5\right)}{8}
Whakareatia -4 ki te -2.
-8r^{2}+26r-15=-\left(-4r+3\right)\left(-2r+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 8 i roto i te -8 me te 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}