Whakaoti mō v
v = -\frac{28}{11} = -2\frac{6}{11} \approx -2.545454545
Tohaina
Kua tāruatia ki te papatopenga
-8v-24+2v+5=5v+9
Whakamahia te āhuatanga tohatoha hei whakarea te -8 ki te v+3.
-6v-24+5=5v+9
Pahekotia te -8v me 2v, ka -6v.
-6v-19=5v+9
Tāpirihia te -24 ki te 5, ka -19.
-6v-19-5v=9
Tangohia te 5v mai i ngā taha e rua.
-11v-19=9
Pahekotia te -6v me -5v, ka -11v.
-11v=9+19
Me tāpiri te 19 ki ngā taha e rua.
-11v=28
Tāpirihia te 9 ki te 19, ka 28.
v=\frac{28}{-11}
Whakawehea ngā taha e rua ki te -11.
v=-\frac{28}{11}
Ka taea te hautanga \frac{28}{-11} te tuhi anō ko -\frac{28}{11} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}