Whakaoti mō x
x=-3
Whakaoti mō x (complex solution)
x=\frac{\pi n_{1}i}{\ln(2)}-3
n_{1}\in \mathrm{Z}
Graph
Tohaina
Kua tāruatia ki te papatopenga
10\times 4^{x+1}=10\times 4^{-2}
Pahekotia te -8\times 4^{x+1} me 18\times 4^{x+1}, ka 10\times 4^{x+1}.
10\times 4^{x+1}=10\times \frac{1}{16}
Tātaihia te 4 mā te pū o -2, kia riro ko \frac{1}{16}.
10\times 4^{x+1}=\frac{5}{8}
Whakareatia te 10 ki te \frac{1}{16}, ka \frac{5}{8}.
4^{x+1}=\frac{\frac{5}{8}}{10}
Whakawehea ngā taha e rua ki te 10.
4^{x+1}=\frac{5}{8\times 10}
Tuhia te \frac{\frac{5}{8}}{10} hei hautanga kotahi.
4^{x+1}=\frac{5}{80}
Whakareatia te 8 ki te 10, ka 80.
4^{x+1}=\frac{1}{16}
Whakahekea te hautanga \frac{5}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\log(4^{x+1})=\log(\frac{1}{16})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(x+1\right)\log(4)=\log(\frac{1}{16})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
x+1=\frac{\log(\frac{1}{16})}{\log(4)}
Whakawehea ngā taha e rua ki te \log(4).
x+1=\log_{4}\left(\frac{1}{16}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-2-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}