Aromātai
-173.25
Tauwehe
-173.25
Tohaina
Kua tāruatia ki te papatopenga
-12+15\times \frac{-32.25}{3}
Tangohia te 4.5 i te -7.5, ka -12.
-12+15\times \frac{-3225}{300}
Whakarohaina te \frac{-32.25}{3} mā te whakarea i te taurunga me te tauraro ki te 100.
-12+15\left(-\frac{43}{4}\right)
Whakahekea te hautanga \frac{-3225}{300} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 75.
-12+\frac{15\left(-43\right)}{4}
Tuhia te 15\left(-\frac{43}{4}\right) hei hautanga kotahi.
-12+\frac{-645}{4}
Whakareatia te 15 ki te -43, ka -645.
-12-\frac{645}{4}
Ka taea te hautanga \frac{-645}{4} te tuhi anō ko -\frac{645}{4} mā te tango i te tohu tōraro.
-\frac{48}{4}-\frac{645}{4}
Me tahuri te -12 ki te hautau -\frac{48}{4}.
\frac{-48-645}{4}
Tā te mea he rite te tauraro o -\frac{48}{4} me \frac{645}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{693}{4}
Tangohia te 645 i te -48, ka -693.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}